1
|
Tomczak JM. Thermoelectricity in correlated narrow-gap semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:183001. [PMID: 29633717 DOI: 10.1088/1361-648x/aab284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class-such as FeSi and FeSb2-display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie-Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators-such as Ce3Bi4Pt3 for which we present new results-and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.
Collapse
Affiliation(s)
- Jan M Tomczak
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
| |
Collapse
|
2
|
Abstract
While electronic states with nontrivial topology have traditionally been known in insulators, they have been evidenced in metals during the past 2 years. Such Weyl semimetals show topological protection while conducting electricity both in the bulk and on the surface. An outstanding question is whether topological protection can happen in metals with strong correlations. Here, we report theoretical work on a strongly correlated lattice model to demonstrate the emergence of a Weyl–Kondo semimetal. We identify Weyl fermions in the bulk and Fermi arcs on the surface, both of which are associated with the many-body phenomenon called the Kondo effect. We determine a key signature of this Weyl–Kondo semimetal, which is realized in a recently discovered heavy-fermion compound. Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy-fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here, we advance a Weyl–Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy-fermion semimetal Ce3Bi4Pd3. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations and open up an avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
Collapse
|
3
|
Dzsaber S, Prochaska L, Sidorenko A, Eguchi G, Svagera R, Waas M, Prokofiev A, Si Q, Paschen S. Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2017; 118:246601. [PMID: 28665644 DOI: 10.1103/physrevlett.118.246601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 06/07/2023]
Abstract
Recent theoretical studies of topologically nontrivial electronic states in Kondo insulators have pointed to the importance of spin-orbit coupling (SOC) for stabilizing these states. However, systematic experimental studies that tune the SOC parameter λ_{SOC} in Kondo insulators remain elusive. The main reason is that variations of (chemical) pressure or doping strongly influence the Kondo coupling J_{K} and the chemical potential μ-both essential parameters determining the ground state of the material-and thus possible λ_{SOC} tuning effects have remained unnoticed. Here, we present the successful growth of the substitution series Ce_{3}Bi_{4}(Pt_{1-x}Pd_{x})_{3} (0≤x≤1) of the archetypal (noncentrosymmetric) Kondo insulator Ce_{3}Bi_{4}Pt_{3}. The Pt-Pd substitution is isostructural, isoelectronic, and isosize, and it therefore is likely to leave J_{K} and μ essentially unchanged. By contrast, the large mass difference between the 5d element Pt and the 4d element Pd leads to a large difference in λ_{SOC}, which thus is the dominating tuning parameter in the series. Surprisingly, with increasing x (decreasing λ_{SOC}), we observe a Kondo insulator to semimetal transition, demonstrating an unprecedented drastic influence of the SOC. The fully substituted end compound Ce_{3}Bi_{4}Pd_{3} shows thermodynamic signatures of a recently predicted Weyl-Kondo semimetal.
Collapse
Affiliation(s)
- S Dzsaber
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - L Prochaska
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - A Sidorenko
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - G Eguchi
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - R Svagera
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - M Waas
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - A Prokofiev
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Q Si
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - S Paschen
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|