1
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
2
|
Rana N, Perlekar P. Coarsening in the two-dimensional incompressible Toner-Tu equation: Signatures of turbulence. Phys Rev E 2020; 102:032617. [PMID: 33076003 DOI: 10.1103/physreve.102.032617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/31/2020] [Indexed: 11/07/2022]
Abstract
We investigate coarsening dynamics in the two-dimensional, incompressible Toner-Tu equation. We show that coarsening proceeds via vortex merger events, and the dynamics crucially depend on the Reynolds number Re. For low Re, the coarsening process has similarities to Ginzburg-Landau dynamics. On the other hand, for high Re, coarsening shows signatures of turbulence. In particular, we show the presence of an enstrophy cascade from the intervortex separation scale to the dissipation scale.
Collapse
Affiliation(s)
- Navdeep Rana
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500046, India
| | - Prasad Perlekar
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500046, India
| |
Collapse
|
3
|
Le Goff T, Liebchen B, Marenduzzo D. Actomyosin Contraction Induces In-Bulk Motility of Cells and Droplets. Biophys J 2020; 119:1025-1032. [PMID: 32795395 DOI: 10.1016/j.bpj.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/29/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Cell crawling on two-dimensional surfaces is a relatively well-understood phenomenon that is based on actin polymerization at a cell's front edge and anchoring on a substrate, allowing the cell to pull itself forward. However, some cells, such as cancer cells invading a three-dimensional matrigel, can also swim in the bulk, where surface adhesion is impossible. Although there is strong evidence that the self-organized engine that drives cells forward in the bulk involves myosin, the specific propulsion mechanism remains largely unclear. Here, we propose a minimal model for in-bulk self-motility of a droplet containing an isotropic and compressible contractile gel, representing a cell extract containing a disordered actomyosin network. In our model, contraction mediates a feedback loop between myosin-induced flow and advection-induced myosin accumulation, which leads to clustering and locally enhanced flow. The symmetry of such flow is then spontaneously broken through actomyosin-membrane interactions, leading to self-organized droplet motility relative to the underlying solvent. Depending on the balance between contraction, diffusion, detachment rate of myosin, and effective surface tension, this motion can be either straight or circular. Our simulations and analytical results shed new light on in-bulk myosin-driven cell motility in living cells and provide a framework to design a novel type of synthetic active matter droplet potentially resembling the motility mechanism of biological cells.
Collapse
Affiliation(s)
| | - Benno Liebchen
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
4
|
Tarama S, Egelhaaf SU, Löwen H. Traveling band formation in feedback-driven colloids. Phys Rev E 2019; 100:022609. [PMID: 31574772 DOI: 10.1103/physreve.100.022609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 06/10/2023]
Abstract
Using simulation and theory we study the dynamics of a colloidal suspension in two dimensions subject to a time-delayed repulsive feedback that depends on the positions of the colloidal particles. The colloidal particles experience an additional potential that is a superposition of repulsive potential energies centered around the positions of all the particles a delay time ago. Here we show that such a feedback leads to self-organization of the particles into traveling bands. The width of the bands and their propagation speed can be tuned by the delay time and the range of the imposed repulsive potential. The emerging traveling band behavior is observed in Brownian dynamics computer simulations as well as microscopic dynamic density functional theory. Traveling band formation also persists in systems of finite size leading to rotating traveling waves in the case of circularly confined systems.
Collapse
Affiliation(s)
- Sonja Tarama
- Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Daddi-Moussa-Ider A, Lisicki M, Mathijssen AJTM, Hoell C, Goh S, Bławzdziewicz J, Menzel AM, Löwen H. State diagram of a three-sphere microswimmer in a channel. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:254004. [PMID: 29757157 DOI: 10.1088/1361-648x/aac470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geometric confinements are frequently encountered in soft matter systems and in particular significantly alter the dynamics of swimming microorganisms in viscous media. Surface-related effects on the motility of microswimmers can lead to important consequences in a large number of biological systems, such as biofilm formation, bacterial adhesion and microbial activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram of a three-sphere microswimmer under channel confinement in a slit geometry and fully characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-type swimmers. While pushers always end up trapped at the channel walls, neutral swimmers and pullers may further perform a gliding motion and maintain a stable navigation along the channel. We find that the resulting dynamical system exhibits a supercritical pitchfork bifurcation in which swimming in the mid-plane becomes unstable beyond a transition channel height while two new stable limit cycles or fixed points that are symmetrically disposed with respect to the channel mid-height emerge. Additionally, we show that an accurate description of the averaged swimming velocity and rotation rate in a channel can be captured analytically using the method of hydrodynamic images, provided that the swimmer size is much smaller than the channel height.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cagnetta F, Evans MR, Marenduzzo D. Active Growth and Pattern Formation in Membrane-Protein Systems. PHYSICAL REVIEW LETTERS 2018; 120:258001. [PMID: 29979071 DOI: 10.1103/physrevlett.120.258001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Inspired by recent experimental observations of patterning at the membrane of a living cell, we propose a generic model for the dynamics of a fluctuating interface driven by particlelike inclusions which stimulate its growth. We find that the coupling between interfacial and inclusions dynamics yields microphase separation and the self-organization of traveling waves. These patterns are strikingly similar to those detected in experiments on biological membranes. Our results further show that the active growth kinetics do not fall into the Kardar-Parisi-Zhang universality class for growing interfaces, displaying instead a novel superposition of scaling and sustained oscillations.
Collapse
Affiliation(s)
- F Cagnetta
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - M R Evans
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
7
|
Daddi-Moussa-Ider A, Lisicki M, Hoell C, Löwen H. Swimming trajectories of a three-sphere microswimmer near a wall. J Chem Phys 2018; 148:134904. [DOI: 10.1063/1.5021027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Maciej Lisicki
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, United Kingdom
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Mukherjee M, Ghosh P. Growth-mediated autochemotactic pattern formation in self-propelling bacteria. Phys Rev E 2018; 97:012413. [PMID: 29448366 DOI: 10.1103/physreve.97.012413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 06/08/2023]
Abstract
Bacteria, while developing a multicellular colony or biofilm, can undergo pattern formation by diverse intricate mechanisms. One such route is directional movement or chemotaxis toward or away from self-secreted or externally employed chemicals. In some bacteria, the self-produced signaling chemicals or autoinducers themselves act as chemoattractants or chemorepellents and thereby regulate the directional movements of the cells in the colony. In addition, bacteria follow a certain growth kinetics which is integrated in the process of colony development. Here, we study the interplay of bacterial growth dynamics, cell motility, and autochemotactic motion with respect to the self-secreted diffusive signaling chemicals in spatial pattern formation. Using a continuum model of motile bacteria, we show growth can act as a crucial tuning parameter in determining the spatiotemporal dynamics of a colony. In action of growth dynamics, while chemoattraction toward autoinducers creates arrested phase separation, pattern transitions and suppression can occur for a fixed chemorepulsive strength.
Collapse
Affiliation(s)
| | - Pushpita Ghosh
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|