1
|
Vernière C, Defienne H. Hiding Images in Quantum Correlations. PHYSICAL REVIEW LETTERS 2024; 133:093601. [PMID: 39270166 DOI: 10.1103/physrevlett.133.093601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 09/15/2024]
Abstract
Photon-pair correlations in spontaneous parametric down-conversion are ubiquitous in quantum photonics. The ability to engineer their properties for optimizing a specific task is essential, but often challenging in practice. We demonstrate the shaping of spatial correlations between entangled photons in the form of arbitrary amplitude and phase objects. By doing this, we encode image information within the pair correlations, making it undetectable by conventional intensity measurements. It enables the transmission of complex, high-dimensional information using quantum correlations of photons, which can be useful for developing quantum communication and imaging protocols.
Collapse
|
2
|
Yesharim O, Pearl S, Foley-Comer J, Juwiler I, Arie A. Direct generation of spatially entangled qudits using quantum nonlinear optical holography. SCIENCE ADVANCES 2023; 9:eade7968. [PMID: 36827364 PMCID: PMC9956120 DOI: 10.1126/sciadv.ade7968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Nonlinear holography shapes the amplitude and phase of generated new harmonics using nonlinear processes. Classical nonlinear holography influenced many fields in optics, from information storage, demultiplexing of spatial information, and all-optical control of accelerating beams. Here, we extend the concept of nonlinear holography to the quantum regime. We directly shape the spatial quantum correlations of entangled photon pairs in two-dimensional patterned nonlinear photonic crystals using spontaneous parametric down conversion, without any pump shaping. The generated signal-idler pair obeys a parity conservation law that is governed by the nonlinear crystal. Furthermore, the quantum states exhibit quantum correlations and violate the Clauser-Horne-Shimony-Holt inequality, thus enabling entanglement-based quantum key distribution. Our demonstration paves the way for controllable on-chip quantum optics schemes using the high-dimensional spatial degree of freedom.
Collapse
Affiliation(s)
- Ofir Yesharim
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Pearl
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Applied Physics Division, Soreq NRC, Yavne, Israel
| | - Joshua Foley-Comer
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Irit Juwiler
- Department of Electrical and Electronics Engineering, Shamoon College of Engineering, Ashdod, Israel
| | - Ady Arie
- School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Anwar A, Perumangatt C, Steinlechner F, Jennewein T, Ling A. Entangled photon-pair sources based on three-wave mixing in bulk crystals. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:041101. [PMID: 34243479 DOI: 10.1063/5.0023103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/01/2021] [Indexed: 06/13/2023]
Abstract
Entangled photon pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation. The current workhorse technique for producing photon pairs is via spontaneous parametric down conversion (SPDC) in bulk nonlinear crystals. The increased prominence of quantum networks has led to a growing interest in deployable high performance entangled photon-pair sources. This manuscript provides a review of the state-of-the-art bulk-optics-based SPDC sources with continuous wave pump and discusses some of the main considerations when building for deployment.
Collapse
Affiliation(s)
- Ali Anwar
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, S117543 Singapore, Singapore
| | - Chithrabhanu Perumangatt
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, S117543 Singapore, Singapore
| | - Fabian Steinlechner
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany
| | - Thomas Jennewein
- Institute of Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Alexander Ling
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, S117543 Singapore, Singapore
| |
Collapse
|
4
|
Lib O, Bromberg Y. Spatially entangled Airy photons. OPTICS LETTERS 2020; 45:1399-1402. [PMID: 32163976 DOI: 10.1364/ol.388692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Over the past decade, Airy beams have been the subject of extensive research, leading to new physical insights and various applications. In this Letter, we extend the concept of Airy beams to the quantum domain. We generate entangled photons in a superposition of two-photon Airy states via spontaneous parametric down conversion, pumped by a classical Airy beam. We show that the entangled Airy photons preserve the intriguing properties of classical Airy beams, such as free acceleration and reduced diffraction, while exhibiting non-classical anti-correlations. Finally, we discuss the advantages offered by entangled Airy photons for high-dimensional free-space quantum communications.
Collapse
|
5
|
An Y, Hou T, Li J, Huang L, Leng J, Yang L, Zhou P. Fast modal analysis for Hermite-Gaussian beams via deep learning. APPLIED OPTICS 2020; 59:1954-1959. [PMID: 32225712 DOI: 10.1364/ao.377189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The eigenmodes of Hermite-Gaussian (HG) beams emitting from solid-state lasers make up a complete and orthonormal basis, and they have gained increasing interest in recent years. Here, we demonstrate a deep learning-based mode decomposition (MD) scheme of HG beams for the first time, to the best of our knowledge. We utilize large amounts of simulated samples to train a convolutional neural network (CNN) and then use this trained CNN to perform MD. The results of simulated testing samples have shown that our scheme can achieve an averaged prediction error of 0.013 when six eigenmodes are involved. The scheme takes only about 23 ms to perform MD for one beam pattern, indicating promising real-time MD ability. When larger numbers of eigenmodes are involved, the method can also succeed with slightly larger prediction error. The robustness of the scheme is also investigated by adding noise to the input beam patterns, and the prediction error is smaller than 0.037 for heavily noisy patterns. This method offers a fast, economic, and robust way to acquire both the mode amplitude and phase information through a single-shot intensity image of HG beams, which will be beneficial to the beam shaping, beam quality evaluation, studies of resonator perturbations, and adaptive optics for resonators of solid-state lasers.
Collapse
|
6
|
Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light. ACTA ACUST UNITED AC 2019. [DOI: 10.1116/1.5112027] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Abstract
One of candidates for the generation mechanism of high linearly polarized γ rays in γ-ray bursts is synchrotron radiations from high energy electrons under strong magnetic fields. If this scenario is true, Hermite Gaussian (HG) wave photons, which are one of high-order Gaussian modes, are also generated by high-order harmonic radiations in strong magnetic fields. The HG wave γ rays propagating along the z-direction have quantum numbers of nodes of nx and ny in the x- and y-directions, respectively. We calculate the differential cross sections for Compton scattering of photons described by HG wave function in the framework of relativistic quantum mechanics. The results indicate that it is possible to identify the HG wave photon and its quantum numbers nx and ny and by measuring the azimuthal angle dependence of differential cross section or the energy spectra of the scattered photon as a function of the azimuthal angle.
Collapse
|
8
|
Zhang L, Agarwal GS, Scully MO. Beam Focusing and Reduction of Quantum Uncertainty in Width at the Few-Photon Level via Multi-Spatial-Mode Squeezing. PHYSICAL REVIEW LETTERS 2019; 122:083601. [PMID: 30932561 DOI: 10.1103/physrevlett.122.083601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/04/2018] [Indexed: 06/09/2023]
Abstract
We show for the first time that it is possible to realize laser beam focusing at the few-photon level in the four-wave-mixing process, and at the same time reduce the quantum uncertainty in width. The reduction in quantum uncertainty results directly from the strong suppression of local intensity fluctuations. This surprising effect of simultaneous focusing and reduction of width uncertainty is enabled by multi-spatial-mode (MSM) squeezing, and is not possible via any classical optical approach or single-spatial-mode squeezing. Our results open promising possibilities for quantum-enhanced imaging and metrology; as an example, the limit on the measurement of very small beam displacement can be enhanced within feasible experimental parameters because of beam focusing and the noiseless amplification in the MSM squeezing process.
Collapse
Affiliation(s)
- Lida Zhang
- Texas A&M University, College Station, Texas 77843, USA
| | - G S Agarwal
- Texas A&M University, College Station, Texas 77843, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - M O Scully
- Texas A&M University, College Station, Texas 77843, USA
- Baylor University, Waco, Texas 76798, USA
- Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
9
|
Abstract
High-dimensional quantum entanglement can enrich the functionality of quantum information processing. For example, it can enhance the channel capacity for linear optic superdense coding and decrease the error rate threshold of quantum key distribution. Long-distance distribution of a high-dimensional entanglement is essential for such advanced quantum communications over a communications network. Here, we show a long-distance distribution of a four-dimensional entanglement. We employ time-bin entanglement, which is suitable for a fibre transmission, and implement scalable measurements for the high-dimensional entanglement using cascaded Mach-Zehnder interferometers. We observe that a pair of time-bin entangled photons has more than 1 bit of secure information capacity over 100 km. Our work constitutes an important step towards secure and dense quantum communications in a large Hilbert space.
Collapse
|