1
|
Oriola D, Marin-Riera M, Anlaş K, Gritti N, Sanaki-Matsumiya M, Aalderink G, Ebisuya M, Sharpe J, Trivedi V. Arrested coalescence of multicellular aggregates. SOFT MATTER 2022; 18:3771-3780. [PMID: 35511111 DOI: 10.1039/d2sm00063f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multicellular aggregates are known to exhibit liquid-like properties. The fusion process of two cell aggregates is commonly studied as the coalescence of two viscous drops. However, tissues are complex materials and can exhibit viscoelastic behaviour. It is known that elastic effects can prevent the complete fusion of two drops, a phenomenon known as arrested coalescence. Here we study this phenomenon in stem cell aggregates and provide a theoretical framework which agrees with the experiments. In addition, agent-based simulations show that active cell fluctuations can control a solid-to-fluid phase transition, revealing that arrested coalescence can be found in the vicinity of an unjamming transition. By analysing the dynamics of the fusion process and combining it with nanoindentation measurements, we obtain the effective viscosity, shear modulus and surface tension of the aggregates. More generally, our work provides a simple, fast and inexpensive method to characterize the mechanical properties of viscoelastic materials.
Collapse
Affiliation(s)
- David Oriola
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, 08003, Barcelona, Spain.
| | - Miquel Marin-Riera
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, 08003, Barcelona, Spain.
| | - Kerim Anlaş
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, 08003, Barcelona, Spain.
| | - Nicola Gritti
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, 08003, Barcelona, Spain.
| | - Marina Sanaki-Matsumiya
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, 08003, Barcelona, Spain.
| | - Germaine Aalderink
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, 08003, Barcelona, Spain.
| | - Miki Ebisuya
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, 08003, Barcelona, Spain.
| | - James Sharpe
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, 08003, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Vikas Trivedi
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, 08003, Barcelona, Spain.
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Pi-Jaumà I, Alert R, Casademunt J. Collective durotaxis of cohesive cell clusters on a stiffness gradient. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:7. [PMID: 35072824 PMCID: PMC8786814 DOI: 10.1140/epje/s10189-021-00150-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/15/2021] [Indexed: 05/03/2023]
Abstract
Many types of motile cells perform durotaxis, namely directed migration following gradients of substrate stiffness. Recent experiments have revealed that cell monolayers can migrate toward stiffer regions even when individual cells do not-a phenomenon known as collective durotaxis. Here, we address the spontaneous motion of finite cohesive cell monolayers on a stiffness gradient. We theoretically analyze a continuum active polar fluid model that has been tested in recent wetting assays of epithelial tissues and includes two types of active forces (cell-substrate traction and cell-cell contractility). The competition between the two active forces determines whether a cell monolayer spreads or contracts. Here, we show that this model generically predicts collective durotaxis, and that it features a variety of dynamical regimes as a result of the interplay between the spreading state and the global propagation, including sequential contraction and spreading of the monolayer as it moves toward higher stiffness. We solve the model exactly in some relevant cases, which provides both physical insights into the mechanisms of tissue durotaxis and spreading as well as a variety of predictions that could guide the design of future experiments.
Collapse
Affiliation(s)
- Irina Pi-Jaumà
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain
- Universitat de Barcelona Institut of Complex Systems (UBICS), 08028, Barcelona, Spain
| | - Ricard Alert
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerst. 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerst. 108, 01307, Dresden, Germany
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain.
- Universitat de Barcelona Institut of Complex Systems (UBICS), 08028, Barcelona, Spain.
| |
Collapse
|
3
|
Heinrich MA, Alert R, LaChance JM, Zajdel TJ, Košmrlj A, Cohen DJ. Size-dependent patterns of cell proliferation and migration in freely-expanding epithelia. eLife 2020; 9:e58945. [PMID: 32812871 PMCID: PMC7498264 DOI: 10.7554/elife.58945] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
The coordination of cell proliferation and migration in growing tissues is crucial in development and regeneration but remains poorly understood. Here, we find that, while expanding with an edge speed independent of initial conditions, millimeter-scale epithelial monolayers exhibit internal patterns of proliferation and migration that depend not on the current but on the initial tissue size, indicating memory effects. Specifically, the core of large tissues becomes very dense, almost quiescent, and ceases cell-cycle progression. In contrast, initially-smaller tissues develop a local minimum of cell density and a tissue-spanning vortex. To explain vortex formation, we propose an active polar fluid model with a feedback between cell polarization and tissue flow. Taken together, our findings suggest that expanding epithelia decouple their internal and edge regions, which enables robust expansion dynamics despite the presence of size- and history-dependent patterns in the tissue interior.
Collapse
Affiliation(s)
- Matthew A Heinrich
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Ricard Alert
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
- Princeton Center for Theoretical Science, Princeton University, Princeton, United States
| | - Julienne M LaChance
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Tom J Zajdel
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
- Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, United States
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| |
Collapse
|
4
|
Active forces shape the metaphase spindle through a mechanical instability. Proc Natl Acad Sci U S A 2020; 117:16154-16159. [PMID: 32601228 DOI: 10.1073/pnas.2002446117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The metaphase spindle is a dynamic structure orchestrating chromosome segregation during cell division. Recently, soft matter approaches have shown that the spindle behaves as an active liquid crystal. Still, it remains unclear how active force generation contributes to its characteristic spindle-like shape. Here we combine theory and experiments to show that molecular motor-driven forces shape the structure through a barreling-type instability. We test our physical model by titrating dynein activity in Xenopus egg extract spindles and quantifying the shape and microtubule orientation. We conclude that spindles are shaped by the interplay between surface tension, nematic elasticity, and motor-driven active forces. Our study reveals how motor proteins can mold liquid crystalline droplets and has implications for the design of active soft materials.
Collapse
|
5
|
Alert R, Casademunt J. Role of Substrate Stiffness in Tissue Spreading: Wetting Transition and Tissue Durotaxis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7571-7577. [PMID: 30281318 DOI: 10.1021/acs.langmuir.8b02037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Living tissues undergo wetting transitions: On a surface, they can either form a dropletlike cell aggregate or spread as a monolayer of migrating cells. Tissue wetting depends not only on the chemical but also on the mechanical properties of the substrate. Here, we study the role of substrate stiffness in tissue spreading, which we describe by means of an active polar fluid model. Taking into account that cells exert larger active traction forces on stiffer substrates, we predict a tissue wetting transition at a critical substrate stiffness that decreases with tissue size. On substrates with a stiffness gradient, we find that the tissue spreads faster on the stiffer side. Furthermore, we show that the tissue can wet the substrate on the stiffer side while dewetting from the softer side. We also show that, by means of viscous forces transmitted across the tissue, the stiffer-side interface can transiently drag the softer-side interface toward increasing stiffness, against its spreading tendency. These two effects result in directed tissue migration up the stiffness gradient. This phenomenon-tissue durotaxis-can thus emerge both from dewetting on the soft side and from hydrodynamic interactions between the tissue interfaces. Overall, our work unveils mechanisms whereby substrate stiffness impacts the collective migration and the active wetting properties of living tissues, which are relevant in development, regeneration, and cancer.
Collapse
|
6
|
Abstract
The assembly of the mitotic spindle and the subsequent segregation of sister chromatids are based on the self-organized action of microtubule filaments, motor proteins, and other microtubule-associated proteins, which constitute the fundamental force-generating elements in the system. Many of the components in the spindle have been identified, but until recently it remained unclear how their collective behaviors resulted in such a robust bipolar structure. Here, we review the current understanding of the physics of the metaphase spindle that is only now starting to emerge.
Collapse
Affiliation(s)
- David Oriola
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; .,Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.,Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 021382, USA
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; .,Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.,Center for Systems Biology Dresden, 01307, Dresden, Germany
| |
Collapse
|
7
|
Ahmed WW, Fodor É, Almonacid M, Bussonnier M, Verlhac MH, Gov N, Visco P, van Wijland F, Betz T. Active Mechanics Reveal Molecular-Scale Force Kinetics in Living Oocytes. Biophys J 2019; 114:1667-1679. [PMID: 29642036 PMCID: PMC5954280 DOI: 10.1016/j.bpj.2018.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 11/27/2022] Open
Abstract
Active diffusion of intracellular components is emerging as an important process in cell biology. This process is mediated by complex assemblies of molecular motors and cytoskeletal filaments that drive force generation in the cytoplasm and facilitate enhanced motion. The kinetics of molecular motors have been precisely characterized in vitro by single molecule approaches, but their in vivo behavior remains elusive. Here, we study the active diffusion of vesicles in mouse oocytes, where this process plays a key role in nuclear positioning during development, and combine an experimental and theoretical framework to extract molecular-scale force kinetics (force, power stroke, and velocity) of the in vivo active process. Assuming a single dominant process, we find that the nonequilibrium activity induces rapid kicks of duration τ ∼ 300 μs resulting in an average force of F ∼ 0.4 pN on vesicles in in vivo oocytes, remarkably similar to the kinetics of in vitro myosin-V. Our results reveal that measuring in vivo active fluctuations allows extraction of the molecular-scale activity in agreement with single-molecule studies and demonstrates a mesoscopic framework to access force kinetics.
Collapse
Affiliation(s)
- Wylie W Ahmed
- Department of Physics, California State University, Fullerton, California; Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC Université Paris 06, Paris, France.
| | - Étienne Fodor
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom; Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France
| | - Maria Almonacid
- CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Équipe Labellisée Fondation pour la Recherche Médicale, Paris, France
| | - Matthias Bussonnier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Marie-Hélène Verlhac
- CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Équipe Labellisée Fondation pour la Recherche Médicale, Paris, France
| | - Nir Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Paolo Visco
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France
| | - Frédéric van Wijland
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France
| | - Timo Betz
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Paris, France; Sorbonne Universités, UPMC Université Paris 06, Paris, France; Institute of Cell Biology, Center for Molecular Biology of Inflammation, Cells-in-Motion Cluster of Excellence, Münster University, Münster, Germany
| |
Collapse
|
8
|
Alert R, Blanch-Mercader C, Casademunt J. Active Fingering Instability in Tissue Spreading. PHYSICAL REVIEW LETTERS 2019; 122:088104. [PMID: 30932560 DOI: 10.1103/physrevlett.122.088104] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 05/13/2023]
Abstract
During the spreading of epithelial tissues, the advancing tissue front often develops fingerlike protrusions. Their resemblance to traditional viscous fingering patterns in driven fluids suggests that epithelial fingers could arise from an interfacial instability. However, the existence and physical mechanism of such a putative instability remain unclear. Here, based on an active polar fluid model for epithelial spreading, we analytically predict a generic instability of the tissue front. On the one hand, active cellular traction forces impose a velocity gradient that leads to an accelerated front, which is, thus, unstable to long-wavelength perturbations. On the other hand, contractile intercellular stresses typically dominate over surface tension in stabilizing short-wavelength perturbations. Finally, the finite range of hydrodynamic interactions in the tissue selects a wavelength for the fingering pattern, which is, thus, given by the smallest between the tissue size and the hydrodynamic screening length. Overall, we show that spreading epithelia experience an active fingering instability based on a simple kinematic mechanism. Moreover, our results underscore the crucial role of long-range hydrodynamic interactions in the dynamics of tissue morphology.
Collapse
Affiliation(s)
- Ricard Alert
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carles Blanch-Mercader
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, 26 rue d'Ulm, 75005 Paris, France
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30, Quai Ernest-Ansermet, 1205 Genève, Switzerland
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Pérez-González C, Alert R, Blanch-Mercader C, Gómez-González M, Kolodziej T, Bazellieres E, Casademunt J, Trepat X. Active wetting of epithelial tissues. NATURE PHYSICS 2019; 15:79-88. [PMID: 31537984 PMCID: PMC6753015 DOI: 10.1038/s41567-018-0279-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Development, regeneration and cancer involve drastic transitions in tissue morphology. In analogy with the behavior of inert fluids, some of these transitions have been interpreted as wetting transitions. The validity and scope of this analogy are unclear, however, because the active cellular forces that drive tissue wetting have been neither measured nor theoretically accounted for. Here we show that the transition between two-dimensional epithelial monolayers and three-dimensional spheroidal aggregates can be understood as an active wetting transition whose physics differs fundamentally from that of passive wetting phenomena. By combining an active polar fluid model with measurements of physical forces as a function of tissue size, contractility, cell-cell and cell-substrate adhesion, and substrate stiffness, we show that the wetting transition results from the competition between traction forces and contractile intercellular stresses. This competition defines a new intrinsic lengthscale that gives rise to a critical size for the wetting transition in tissues, a striking feature that has no counterpart in classical wetting. Finally, we show that active shape fluctuations are dynamically amplified during tissue dewetting. Overall, we conclude that tissue spreading constitutes a prominent example of active wetting - a novel physical scenario that may explain morphological transitions during tissue morphogenesis and tumor progression.
Collapse
Affiliation(s)
- Carlos Pérez-González
- Institute for Bioengineering of Catalonia, The Barcelona Institute
for Science and Technology (BIST), Barcelona 08028, Spain
- Facultat de Medicina, University of Barcelona, 08028 Barcelona,
Spain
| | - Ricard Alert
- Departament de Física de la Matèria Condensada,
Facultat de Física, University of Barcelona, 08028 Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), 08028
Barcelona, Spain
| | - Carles Blanch-Mercader
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research
University - Sorbonne Universités, UPMC CNRS, UMR 168, 26 rue d’Ulm,
F-75248 Paris Cedex 05, France
- Department of Biochemistry and NCCR Chemical Biology, Sciences II,
University of Geneva, Quai Ernest-Ansermet 30, Geneva, CH-1211, Switzerland
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia, The Barcelona Institute
for Science and Technology (BIST), Barcelona 08028, Spain
| | - Tomasz Kolodziej
- Faculty of Physics, Astronomy and Applied Computer Science,
Jagiellonian University in Kraków, 30-348 Kraków, Poland
| | - Elsa Bazellieres
- Institute for Bioengineering of Catalonia, The Barcelona Institute
for Science and Technology (BIST), Barcelona 08028, Spain
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada,
Facultat de Física, University of Barcelona, 08028 Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), 08028
Barcelona, Spain
- Corresponding authors: Jaume Casademunt, PhD, Professor of
Physics, Depertment of Condensed Matter Physics (University of Barcelona -
UBICS), Martí i Franquès, 1, 08028, Barcelona, Spain, (+34) 934
021 188, ; Xavier Trepat, PhD, ICREA
Research Professor, Institute for Bioengineering of Catalonia, Ed. Hèlix,
Baldiri i Reixac, 15-21, 08028, Barcelona, Spain, (+34) 934 020 265,
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, The Barcelona Institute
for Science and Technology (BIST), Barcelona 08028, Spain
- Facultat de Medicina, University of Barcelona, 08028 Barcelona,
Spain
- Institució Catalana de Recerca i Estudis Avançats
(ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en
Bioingeniería, Biomateriales y Nanomedicina, 08028, Spain
- Corresponding authors: Jaume Casademunt, PhD, Professor of
Physics, Depertment of Condensed Matter Physics (University of Barcelona -
UBICS), Martí i Franquès, 1, 08028, Barcelona, Spain, (+34) 934
021 188, ; Xavier Trepat, PhD, ICREA
Research Professor, Institute for Bioengineering of Catalonia, Ed. Hèlix,
Baldiri i Reixac, 15-21, 08028, Barcelona, Spain, (+34) 934 020 265,
| |
Collapse
|
10
|
Bernheim-Groswasser A, Gov NS, Safran SA, Tzlil S. Living Matter: Mesoscopic Active Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707028. [PMID: 30256463 DOI: 10.1002/adma.201707028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/27/2018] [Indexed: 06/08/2023]
Abstract
An introduction to the physical properties of living active matter at the mesoscopic scale (tens of nanometers to micrometers) and their unique features compared with "dead," nonactive matter is presented. This field of research is increasingly denoted as "biological physics" where physics includes chemical physics, soft matter physics, hydrodynamics, mechanics, and the related engineering sciences. The focus is on the emergent properties of these systems and their collective behavior, which results in active self-organization and how they relate to cellular-level biological function. These include locomotion (cell motility and migration) forces that give rise to cell division, the growth and form of cellular assemblies in development, the beating of heart cells, and the effects of mechanical perturbations such as shear flow (in the bloodstream) or adhesion to other cells or tissues. An introduction to the fundamental concepts and theory with selected experimental examples related to the authors' own research is presented, including red-blood-cell membrane fluctuations, motion of the nucleus within an egg cell, self-contracting acto-myosin gels, and structure and beating of heart cells (cardiomyocytes), including how they can be driven by an oscillating, mechanical probe.
Collapse
Affiliation(s)
- Anne Bernheim-Groswasser
- Department of Chemical Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shelly Tzlil
- Department of Mechanical Engineering, Technion, Haifa, 3200003, Israel
| |
Collapse
|
11
|
Posey D, Blaisdell-Pijuan P, Knoll SK, Saif TA, Ahmed WW. Small-scale displacement fluctuations of vesicles in fibroblasts. Sci Rep 2018; 8:13294. [PMID: 30185883 PMCID: PMC6125338 DOI: 10.1038/s41598-018-31656-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/16/2018] [Indexed: 11/09/2022] Open
Abstract
The intracellular environment is a dynamic space filled with various organelles moving in all directions. Included in this diverse group of organelles are vesicles, which are involved in transport of molecular cargo throughout the cell. Vesicles move in either a directed or non-directed fashion, often depending on interactions with cytoskeletal proteins such as microtubules, actin filaments, and molecular motors. How these proteins affect the local fluctuations of vesicles in the cytoplasm is not clear since they have the potential to both facilitate and impede movement. Here we show that vesicle mobility is significantly affected by myosin-II, even though it is not a cargo transport motor. We find that myosin-II activity increases the effective diffusivity of vesicles and its inhibition facilitates longer states of non-directed motion. Our study suggests that altering myosin-II activity in the cytoplasm of cells can modulate the mobility of vesicles, providing a possible mechanism for cells to dynamically tune the cytoplasmic environment in space and time.
Collapse
Affiliation(s)
- Danielle Posey
- Department of Biological Science, California State University, Fullerton, CA, USA
| | | | - Samantha K Knoll
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Wylie W Ahmed
- Department of Physics, California State University, Fullerton, CA, USA.
| |
Collapse
|
12
|
Blanch-Mercader C, Casademunt J. Hydrodynamic instabilities, waves and turbulence in spreading epithelia. SOFT MATTER 2017; 13:6913-6928. [PMID: 28825077 DOI: 10.1039/c7sm01128h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a hydrodynamic model of spreading epithelial monolayers described as polar viscous fluids, with active contractility and traction on a substrate. The combination of both active forces generates an instability that leads to nonlinear traveling waves, which propagate in the direction of polarity with characteristic time scales that depend on contact forces. Our viscous fluid model provides a comprehensive understanding of a variety of observations on the slow dynamics of epithelial monolayers, remarkably those that seemed to be characteristic of elastic media. The model also makes simple predictions to test the non-elastic nature of the mechanical waves, and provides new insights into collective cell dynamics, explaining plithotaxis as a result of strong flow-polarity coupling, and quantifying the non-locality of force transmission. In addition, we study the nonlinear regime of waves deriving an exact map of the model into the complex Ginzburg-Landau equation, which provides a complete classification of possible nonlinear scenarios. In particular, we predict the transition to different forms of weak turbulence, which in turn could explain the chaotic dynamics often observed in epithelia.
Collapse
Affiliation(s)
- C Blanch-Mercader
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain. and Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, 26 rue d' Ulm, 75005 Paris, France
| | - J Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain. and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|