1
|
Sadeghi F, Motamedifar M, Golshani M. Anomalous behavior in entanglement speed profile through spin chains. Phys Rev E 2024; 109:044107. [PMID: 38755918 DOI: 10.1103/physreve.109.044107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 05/18/2024]
Abstract
The origin of the uniform Dzyaloshinskii-Moriya interaction (DMI), which is responsible for the creation of chiral magnetism, has been the subject of extensive research. Recently, modern technology has allowed for its production and utilization in a modulated form. Not only can magnetic phases of spin chains be enriched by the presence of such a potential as detailed in Japaridze et al. [Phys. Rev. E 104, 014134 (2021)10.1103/PhysRevE.104.014134], but the capacity of such systems for information transmission is also greatly enhanced. The current paper examines the impact of a staggered pattern of DMI (STDMI) on a chain with a substrate XX Heisenberg interaction. It is demonstrated how enhancing the intensity of this coupling improves the propagation of an entangled quantum state. Additionally, as our analysis has shown, the initial condition over the system's state has a profound effect on the speed at which entanglement spreads. The aberrant behavior of the entanglement's speed profile in response to fine-tuning of the phase factor which adjusts the initial state is the focus of this paper. This anomalous behavior is characterized by dramatic drops in speed for certain phase factor values. We have also shown that, using wave interference principles, we can predict exactly why these phenomena occur. This research will pave the way for additional studies on STDMI and its potential applications in the field of quantum information.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Faculty of Physics, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| | - Mostafa Motamedifar
- Faculty of Physics, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| | - Mojtaba Golshani
- Faculty of Physics, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| |
Collapse
|
2
|
Fedorov SA, Zeuthen E. Prediction-Retrodiction Measurements for Teleportation and Conditional State Transfer. PHYSICAL REVIEW LETTERS 2023; 131:060801. [PMID: 37625068 DOI: 10.1103/physrevlett.131.060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023]
Abstract
Regular measurements allow predicting the future and retrodicting the past of quantum systems. Time-nonlocal measurements can leave the future and the past uncertain, yet establish a relation between them. We show that continuous time-nonlocal measurements can be used to transfer a quantum state via teleportation or direct transmission. Considering two oscillators probed by traveling fields, we analytically identify strategies for performing the state transfer perfectly across a wide range of linear oscillator-field interactions beyond the pure beam-splitter and two-mode-squeezing types.
Collapse
Affiliation(s)
- Sergey A Fedorov
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Emil Zeuthen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Cao L, Wan S, Zeng Y, Zhu Y, Assouar B. Observation of phononic skyrmions based on hybrid spin of elastic waves. SCIENCE ADVANCES 2023; 9:eadf3652. [PMID: 36800422 PMCID: PMC9937567 DOI: 10.1126/sciadv.adf3652] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Skyrmions with topologically stable configuration have shown a promising route toward high-density magnetic and photonic information processing due to their defect-immune and low-driven energy. Here, we experimentally report and observe the existence of phononic skyrmions as new topological structures formed by the three-dimensional hybrid spin of elastic waves. We demonstrate that the frequency-independent spin configuration leads to ultra-broadband feature of phononic skyrmions, which can be produced in any solid structure, including chip-scale ones. We further experimentally show the excellent robustness of the flexibly movable phononic skyrmion lattices against local defects of disorder, sharp corners, and even rectangular holes. Our research opens a vibrant horizon toward an unprecedented way for elastic wave manipulation and structuration by spin configuration and offers a promising lever for alternative phononic technologies, including information processing, biomedical testing, and wave engineering.
Collapse
Affiliation(s)
- Liyun Cao
- Université de Lorraine, CNRS, Institut Jean Lamour, Nancy 54000, France
| | - Sheng Wan
- Université de Lorraine, CNRS, Institut Jean Lamour, Nancy 54000, France
| | - Yi Zeng
- Université de Lorraine, CNRS, Institut Jean Lamour, Nancy 54000, France
| | - Yifan Zhu
- Université de Lorraine, CNRS, Institut Jean Lamour, Nancy 54000, France
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | | |
Collapse
|
4
|
Xiang ZL, Olivares DG, García-Ripoll JJ, Rabl P. Universal Time-Dependent Control Scheme for Realizing Arbitrary Linear Bosonic Transformations. PHYSICAL REVIEW LETTERS 2023; 130:050801. [PMID: 36800447 DOI: 10.1103/physrevlett.130.050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
We study the implementation of arbitrary excitation-conserving linear transformations between two sets of N stationary bosonic modes, which are connected through a photonic quantum channel. By controlling the individual couplings between the modes and the channel, an initial N-partite quantum state in register A can be released as a multiphoton wave packet and, successively, be reabsorbed in register B. Here we prove that there exists a set of control pulses that implement this transfer with arbitrarily high fidelity and, simultaneously, realize a prespecified N×N unitary transformation between the two sets of modes. Moreover, we provide a numerical algorithm for constructing these control pulses and discuss the scaling and robustness of this protocol in terms of several illustrative examples. By being purely control-based and not relying on any adaptations of the underlying hardware, the presented scheme is extremely flexible and can find widespread applications, for example, for boson-sampling experiments, multiqubit state transfer protocols, or in continuous-variable quantum computing architectures.
Collapse
Affiliation(s)
- Ze-Liang Xiang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | - Peter Rabl
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| |
Collapse
|
5
|
Qasymeh M, Eleuch H. High-fidelity quantum information transmission using a room-temperature nonrefrigerated lossy microwave waveguide. Sci Rep 2022; 12:16352. [PMID: 36175489 PMCID: PMC9522659 DOI: 10.1038/s41598-022-20733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
Quantum microwave transmission is key to realizing modular superconducting quantum computers and distributed quantum networks. A large number of incoherent photons are thermally generated within the microwave frequency spectrum. The closeness of the transmitted quantum state to the source-generated quantum state at the input of the transmission link (measured by the transmission fidelity) degrades due to the presence of the incoherent photons. Hence, high-fidelity quantum microwave transmission has long been considered to be infeasible without refrigeration. In this study, we propose a novel method for high-fidelity quantum microwave transmission using a room-temperature lossy waveguide. The proposed scheme consists of connecting two cryogenic nodes (i.e., a transmitter and a receiver) by the room-temperature lossy microwave waveguide. First, cryogenic preamplification is implemented prior to transmission. Second, at the receiver side, a cryogenic loop antenna is placed inside the output port of the waveguide and coupled to an LC harmonic oscillator located outside the waveguide. The loop antenna converts quantum microwave fields to a quantum voltage across the coupled LC harmonic oscillator. Noise photons are induced across the LC oscillator including the source generated noise, the preamplification noise, the thermal occupation of the waveguide, and the fluctuation-dissipation noise. The loop antenna detector at the receiver is designed to extensively suppress the induced photons across the LC oscillator. The signal transmittance is maintained intact by providing significant preamplification gain. Our calculations show that high-fidelity quantum transmission (i.e., more than [Formula: see text]) is realized based on the proposed scheme for transmission distances reaching 100 m.
Collapse
Affiliation(s)
- Montasir Qasymeh
- Electrical and Computer Engineering Department, Abu Dhabi University, 59911, Abu Dhabi, United Arab Emirates.
| | - Hichem Eleuch
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates
- Institute for Quantum Science and Engineering, Texas AM University, College Station, TX, 77843, USA
| |
Collapse
|
6
|
Espinosa AFM, Lee RK, Rodríguez-Lara BM. Non-classical light state transfer in su(2) resonator networks. Sci Rep 2022; 12:10505. [PMID: 35732676 PMCID: PMC9218127 DOI: 10.1038/s41598-022-14277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 11/12/2022] Open
Abstract
We use a normal mode approach to show full and partial state transfer in a class of coupled resonator networks with underlying su(2) symmetry that includes the so-called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J_{x}$$\end{document}Jx photonic lattice. Our approach defines an auxiliary Hermitian coupling matrix describing the network that yields the normal modes of the system and its time evolution in terms of orthogonal polynomials. Our results provide insight on the full quantum state reconstruction time in a general su(2) network of any size and the full quantum transfer time in the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J_{x}$$\end{document}Jx network of size \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4 n + 1$$\end{document}4n+1 with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n=1,2,3,\ldots$$\end{document}n=1,2,3,… For any other network sizes, the Fock state probability distribution of the initial state is conserved but the amplitudes suffer a phase shift proportional to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi /2$$\end{document}π/2 that results in partial quantum state transfer.
Collapse
Affiliation(s)
- A F Muñoz Espinosa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - R-K Lee
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Physics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan.,Center for Quantum Technologies, Hsinchu, 30013, Taiwan
| | - B M Rodríguez-Lara
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico.
| |
Collapse
|
7
|
Zhong Y, Chang HS, Bienfait A, Dumur É, Chou MH, Conner CR, Grebel J, Povey RG, Yan H, Schuster DI, Cleland AN. Deterministic multi-qubit entanglement in a quantum network. Nature 2021; 590:571-575. [PMID: 33627810 DOI: 10.1038/s41586-021-03288-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023]
Abstract
The generation of high-fidelity distributed multi-qubit entanglement is a challenging task for large-scale quantum communication and computational networks1-4. The deterministic entanglement of two remote qubits has recently been demonstrated with both photons5-10 and phonons11. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily owing to limited state-transfer fidelities. Here we report a quantum network comprising two superconducting quantum nodes connected by a one-metre-long superconducting coaxial cable, where each node includes three interconnected qubits. By directly connecting the cable to one qubit in each node, we transfer quantum states between the nodes with a process fidelity of 0.911 ± 0.008. We also prepare a three-qubit Greenberger-Horne-Zeilinger (GHZ) state12-14 in one node and deterministically transfer this state to the other node, with a transferred-state fidelity of 0.656 ± 0.014. We further use this system to deterministically generate a globally distributed two-node, six-qubit GHZ state with a state fidelity of 0.722 ± 0.021. The GHZ state fidelities are clearly above the threshold of 1/2 for genuine multipartite entanglement15, showing that this architecture can be used to coherently link together multiple superconducting quantum processors, providing a modular approach for building large-scale quantum computers16,17.
Collapse
Affiliation(s)
- Youpeng Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hung-Shen Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Audrey Bienfait
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France
| | - Étienne Dumur
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Institute for Molecular Engineering and Material Science Division, Argonne National Laboratory, Argonne, IL, USA.,Université Grenoble Alpes, CEA, INAC-Pheliqs, Grenoble, France
| | - Ming-Han Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Department of Physics, University of Chicago, Chicago, IL, USA
| | - Christopher R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Joel Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Rhys G Povey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Department of Physics, University of Chicago, Chicago, IL, USA
| | - Haoxiong Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - David I Schuster
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Department of Physics, University of Chicago, Chicago, IL, USA
| | - Andrew N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA. .,Institute for Molecular Engineering and Material Science Division, Argonne National Laboratory, Argonne, IL, USA.
| |
Collapse
|
8
|
Wang X, Liu T, Kockum AF, Li HR, Nori F. Tunable Chiral Bound States with Giant Atoms. PHYSICAL REVIEW LETTERS 2021; 126:043602. [PMID: 33576670 DOI: 10.1103/physrevlett.126.043602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
We propose tunable chiral bound states in a system composed of superconducting giant atoms and a Josephson photonic-crystal waveguide (PCW), with no analog in other quantum setups. The chiral bound states arise due to interference in the nonlocal coupling of a giant atom to multiple points of the waveguide. The chirality can be tuned by changing either the atom-waveguide coupling or the external bias of the PCW. Furthermore, the chiral bound states can induce directional dipole-dipole interactions between multiple giant atoms coupling to the same waveguide. Our proposal is ready to be implemented in experiments with superconducting circuits, where it can be used as a tunable toolbox to realize topological phase transitions and quantum simulations.
Collapse
Affiliation(s)
- Xin Wang
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 710049 Xi'an, People's Republic of China
| | - Tao Liu
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Anton Frisk Kockum
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Hong-Rong Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 710049 Xi'an, People's Republic of China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
9
|
Magnard P, Storz S, Kurpiers P, Schär J, Marxer F, Lütolf J, Walter T, Besse JC, Gabureac M, Reuer K, Akin A, Royer B, Blais A, Wallraff A. Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems. PHYSICAL REVIEW LETTERS 2020; 125:260502. [PMID: 33449744 DOI: 10.1103/physrevlett.125.260502] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/16/2020] [Indexed: 05/26/2023]
Abstract
Superconducting circuits are a strong contender for realizing quantum computing systems and are also successfully used to study quantum optics and hybrid quantum systems. However, their cryogenic operation temperatures and the current lack of coherence-preserving microwave-to-optical conversion solutions have hindered the realization of superconducting quantum networks spanning different cryogenic systems or larger distances. Here, we report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters. We transfer qubit states and generate entanglement on demand with average transfer and target state fidelities of 85.8% and 79.5%, respectively, between the two nodes of this elementary network. Cryogenic microwave links provide an opportunity to scale up systems for quantum computing and create local area superconducting quantum communication networks over length scales of at least tens of meters.
Collapse
Affiliation(s)
- P Magnard
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - S Storz
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - P Kurpiers
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - J Schär
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - F Marxer
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - J Lütolf
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - T Walter
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - J-C Besse
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - M Gabureac
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - K Reuer
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - A Akin
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - B Royer
- Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - A Blais
- Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - A Wallraff
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
- Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
Yu T, Zhang YX, Sharma S, Zhang X, Blanter YM, Bauer GEW. Magnon Accumulation in Chirally Coupled Magnets. PHYSICAL REVIEW LETTERS 2020; 124:107202. [PMID: 32216419 DOI: 10.1103/physrevlett.124.107202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/19/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
We report strong chiral coupling between magnons and photons in microwave waveguides that contain chains of small magnets on special lines. Large magnon accumulations at one edge of the chain emerge when exciting the magnets by a phased antenna array. This mechanism holds the promise of new functionalities in nonlinear and quantum magnonics.
Collapse
Affiliation(s)
- Tao Yu
- Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Yu-Xiang Zhang
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Sanchar Sharma
- Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Xiang Zhang
- Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Yaroslav M Blanter
- Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Gerrit E W Bauer
- Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, Netherlands
- Institute for Materials Research and WPI-AIMR and CSRN, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
11
|
Jones R, Buonaiuto G, Lang B, Lesanovsky I, Olmos B. Collectively Enhanced Chiral Photon Emission from an Atomic Array near a Nanofiber. PHYSICAL REVIEW LETTERS 2020; 124:093601. [PMID: 32202864 DOI: 10.1103/physrevlett.124.093601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Emitter ensembles interact collectively with the radiation field. In the case of a one-dimensional array of atoms near a nanofiber, this collective light-matter interaction does not only lead to an increased photon coupling to the guided modes within the fiber, but also to a drastic enhancement of the chirality in the photon emission. We show that near-perfect chirality can be achieved already for moderately sized ensembles, containing 10 to 15 atoms, by phase matching a superradiant collective guided emission mode via an external laser field. This is of importance for developing an efficient interface between atoms and waveguide structures with unidirectional coupling, with applications in quantum computing and communication such as the development of nonreciprocal photon devices or quantum information transfer channels.
Collapse
Affiliation(s)
- Ryan Jones
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Giuseppe Buonaiuto
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Ben Lang
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Beatriz Olmos
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Kiilerich AH, Mølmer K. Input-Output Theory with Quantum Pulses. PHYSICAL REVIEW LETTERS 2019; 123:123604. [PMID: 31633961 DOI: 10.1103/physrevlett.123.123604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/10/2023]
Abstract
We present a formalism that accounts for the interaction of a local quantum system, such as an atom or a cavity, with traveling pulses of quantized radiation. We assume Markovian coupling of the stationary system to the input and output fields and nondispersive asymptotic propagation of the pulses before and after the interaction. This permits derivation of a master equation where the input and output pulses are treated as single oscillator modes that both couple to the local system in a cascaded manner. As examples of our theory, we analyze reflection by an empty cavity with phase noise, stimulated atomic emission by a quantum light pulse, and formation of a Schrödinger-cat state by the dispersive interaction of a coherent pulse and a single atom in a cavity.
Collapse
Affiliation(s)
- Alexander Holm Kiilerich
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK 8000 Aarhus C, Denmark
| | - Klaus Mølmer
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Cha J, Daraio C. Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies. NATURE NANOTECHNOLOGY 2018; 13:1016-1020. [PMID: 30201989 DOI: 10.1038/s41565-018-0252-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/02/2018] [Indexed: 05/24/2023]
Abstract
Nanoelectromechanical systems (NEMS) that operate in the megahertz (MHz) regime allow energy transducibility between different physical domains. For example, they convert optical or electrical signals into mechanical motions and vice versa1. This coupling of different physical quantities leads to frequency-tunable NEMS resonators via electromechanical non-linearities2-4. NEMS platforms with single- or low-degrees of freedom have been employed to demonstrate quantum-like effects, such as mode cooling5, mechanically induced transparency5, Rabi oscillation6,7, two-mode squeezing8 and phonon lasing9. Periodic arrays of NEMS resonators with architected unit cells enable fundamental studies of lattice-based solid-state phenomena, such as bandgaps10,11, energy transport10-12, non-linear dynamics and localization13,14, and topological properties15, directly transferrable to on-chip devices. Here we describe one-dimensional, non-linear, nanoelectromechanical lattices (NEML) with active control of the frequency band dispersion in the radio-frequency domain (10-30 MHz). The design of our systems is inspired by NEMS-based phonon waveguides10,11 and includes the voltage-induced frequency tuning of the individual resonators2-4. Our NEMLs consist of a periodic arrangement of mechanically coupled, free-standing nanomembranes with circular clamped boundaries. This design forms a flexural phononic crystal with a well-defined bandgap, 1.8 MHz wide. The application of a d.c. gate voltage creates voltage-dependent on-site potentials, which can significantly shift the frequency bands of the device. Additionally, a dynamic modulation of the voltage triggers non-linear effects, which induce the formation of a phononic bandgap in the acoustic branch, analogous to Peierls transition in condensed matter16. The gating approach employed here makes the devices more compact than recently proposed systems, whose tunability mostly relies on materials' compliance17,18 and mechanical non-linearities19-22.
Collapse
Affiliation(s)
- Jinwoong Cha
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Chiara Daraio
- Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
14
|
Černotík O, Mahmoodian S, Hammerer K. Spatially Adiabatic Frequency Conversion in Optoelectromechanical Arrays. PHYSICAL REVIEW LETTERS 2018; 121:110506. [PMID: 30265088 DOI: 10.1103/physrevlett.121.110506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 06/08/2023]
Abstract
Faithful conversion of quantum signals between microwave and optical frequency domains is crucial for building quantum networks based on superconducting circuits. Optoelectromechanical systems, in which microwave and optical cavity modes are coupled to a common mechanical oscillator, are a promising route towards this goal. In these systems, efficient, low-noise conversion is possible using a mechanically dark mode of the fields, but the conversion bandwidth is limited to a fraction of the cavity linewidth. Here, we show that an array of optoelectromechanical transducers can overcome this limitation and reach a bandwidth that is larger than the cavity linewidth. The coupling rates are varied in space throughout the array so that the mechanically dark mode of the propagating fields adiabatically changes from microwave to optical or vice versa. This strategy also leads to significantly reduced thermal noise with the collective optomechanical cooperativity being the relevant figure of merit. Finally, we demonstrate that the bandwidth enhancement is, surprisingly, largest for small arrays; this feature makes our scheme particularly attractive for state-of-the-art experimental setups.
Collapse
Affiliation(s)
- Ondřej Černotík
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Appelstraße 2, 30167 Hannover, Germany
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
| | - Sahand Mahmoodian
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Klemens Hammerer
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Appelstraße 2, 30167 Hannover, Germany
| |
Collapse
|
15
|
Patel RN, Wang Z, Jiang W, Sarabalis CJ, Hill JT, Safavi-Naeini AH. Single-Mode Phononic Wire. PHYSICAL REVIEW LETTERS 2018; 121:040501. [PMID: 30095955 DOI: 10.1103/physrevlett.121.040501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 06/08/2023]
Abstract
Photons and electrons transmit information to form complex systems and networks. Phonons on the other hand, the quanta of mechanical motion, are often considered only as carriers of thermal energy. Nonetheless, their flow can also be molded in fabricated nanoscale circuits. We design and experimentally demonstrate wires for phonons by patterning the surface of a silicon chip. Our device eliminates all but one channel of phonon conduction, allowing coherent phonon transport over millimeter length scales. We characterize the phononic wire optically, by coupling it strongly to an optomechanical transducer. The phononic wire enables new ways to manipulate information and energy on a chip. In particular, our result is an important step towards realizing on-chip phonon networks, in which quantum information is transmitted between nodes via phonons.
Collapse
Affiliation(s)
- Rishi N Patel
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Zhaoyou Wang
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Wentao Jiang
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Christopher J Sarabalis
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Jeff T Hill
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Amir H Safavi-Naeini
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| |
Collapse
|
16
|
Zhang M, Zou CL, Jiang L. Quantum Transduction with Adaptive Control. PHYSICAL REVIEW LETTERS 2018; 120:020502. [PMID: 29376679 DOI: 10.1103/physrevlett.120.020502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.
Collapse
Affiliation(s)
- Mengzhen Zhang
- Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Chang-Ling Zou
- Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
- Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui 230026, China
| | - Liang Jiang
- Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
17
|
Quinteiro GF, Schmidt-Kaler F, Schmiegelow CT. Twisted-Light-Ion Interaction: The Role of Longitudinal Fields. PHYSICAL REVIEW LETTERS 2017; 119:253203. [PMID: 29303341 DOI: 10.1103/physrevlett.119.253203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Indexed: 05/05/2023]
Abstract
The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped ^{40}Ca^{+} ion from Schmiegelow et al. [Nat. Commun. 7, 12998 (2016)NCAOBW2041-172310.1038/ncomms12998] with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental data and excludes by 11 standard deviations the approximation of a complete transverse field. This demonstrates the relevance of all field components for the interaction of twisted light with matter.
Collapse
Affiliation(s)
- G F Quinteiro
- Departamento de Física and IFIBA, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Ciudad de Buenos Aires, Argentina
| | | | - Christian T Schmiegelow
- Departamento de Física and IFIBA, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Ciudad de Buenos Aires, Argentina
| |
Collapse
|
18
|
Meher N, Sivakumar S, Panigrahi PK. Duality and quantum state engineering in cavity arrays. Sci Rep 2017; 7:9251. [PMID: 28835605 PMCID: PMC5569058 DOI: 10.1038/s41598-017-08569-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
A system of two coupled cavities with N − 1 photons is shown to be dynamically equivalent to an array of N coupled cavities containing one photon. Every transition in the two cavity system has a dual phenomenon in terms of photon transport in the cavity array. This duality is employed to arrive at the required coupling strengths and nonlinearities in the cavity array so that controlled photon transfer is possible between any two cavities. This transfer of photons between two of the cavities in the array is effected without populating the other cavities. The condition for perfect transport enables perfect state transfer between any two cavities in the array. Further, possibility of high fidelity generation of generalized NOON states in two coupled cavities, which are dual to the Bell states of the photon in the cavity array, is established.
Collapse
Affiliation(s)
- Nilakantha Meher
- Materials Science Group, Indira Gandhi Centre For Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, Tamilnadu, India
| | - S Sivakumar
- Materials Science Group, Indira Gandhi Centre For Atomic Research, Homi Bhabha National Institute, Kalpakkam, 603102, Tamilnadu, India.
| | - Prasanta K Panigrahi
- Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
| |
Collapse
|
19
|
Gatti G, Barberena D, Sanz M, Solano E. Protected State Transfer via an Approximate Quantum Adder. Sci Rep 2017; 7:6964. [PMID: 28761133 PMCID: PMC5537370 DOI: 10.1038/s41598-017-06425-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
We propose a decoherence protected protocol for sending single photon quantum states through depolarizing channels. This protocol is implemented via an approximate quantum adder engineered through spontaneous parametric down converters, and shows higher success probability than distilled quantum teleportation protocols for distances below a threshold depending on the properties of the channel.
Collapse
Affiliation(s)
- G Gatti
- Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Apartado, 1761, Lima, Peru
| | - D Barberena
- Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Apartado, 1761, Lima, Peru
| | - M Sanz
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080, Bilbao, Spain.
| | - E Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080, Bilbao, Spain.,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48011, Bilbao, Spain
| |
Collapse
|
20
|
Li L, Zou CL, Albert VV, Muralidharan S, Girvin SM, Jiang L. Cat Codes with Optimal Decoherence Suppression for a Lossy Bosonic Channel. PHYSICAL REVIEW LETTERS 2017; 119:030502. [PMID: 28777607 DOI: 10.1103/physrevlett.119.030502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 06/07/2023]
Abstract
We investigate cat codes that can correct multiple excitation losses and identify two types of logical errors: bit-flip errors due to excessive excitation loss and dephasing errors due to quantum backaction from the environment. We show that selected choices of logical subspace and coherent amplitude significantly reduce dephasing errors. The trade-off between the two major errors enables optimized performance of cat codes in terms of minimized decoherence. With high coupling efficiency, we show that one-way quantum repeaters with cat codes feature a boosted secure communication rate per mode when compared to conventional encoding schemes, showcasing the promising potential of quantum information processing with continuous variable quantum codes.
Collapse
Affiliation(s)
- Linshu Li
- Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Chang-Ling Zou
- Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Victor V Albert
- Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Sreraman Muralidharan
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - S M Girvin
- Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Liang Jiang
- Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|