1
|
Smarra C, Goncharov B, Barausse E, Antoniadis J, Babak S, Nielsen ASB, Bassa CG, Berthereau A, Bonetti M, Bortolas E, Brook PR, Burgay M, Caballero RN, Chalumeau A, Champion DJ, Chanlaridis S, Chen S, Cognard I, Desvignes G, Falxa M, Ferdman RD, Franchini A, Gair JR, Graikou E, Grießmeier JM, Guillemot L, Guo YJ, Hu H, Iraci F, Izquierdo-Villalba D, Jang J, Jawor J, Janssen GH, Jessner A, Karuppusamy R, Keane EF, Keith MJ, Kramer M, Krishnakumar MA, Lackeos K, Lee KJ, Liu K, Liu Y, Lyne AG, McKee JW, Main RA, Mickaliger MB, Niţu IC, Parthasarathy A, Perera BBP, Perrodin D, Petiteau A, Porayko NK, Possenti A, Leclere HQ, Samajdar A, Sanidas SA, Sesana A, Shaifullah G, Speri L, Spiewak R, Stappers BW, Susarla SC, Theureau G, Tiburzi C, van der Wateren E, Vecchio A, Krishnan VV, Wang J, Wang L, Wu Z. Second Data Release from the European Pulsar Timing Array: Challenging the Ultralight Dark Matter Paradigm. PHYSICAL REVIEW LETTERS 2023; 131:171001. [PMID: 37955508 DOI: 10.1103/physrevlett.131.171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023]
Abstract
Pulsar Timing Array experiments probe the presence of possible scalar or pseudoscalar ultralight dark matter particles through decade-long timing of an ensemble of galactic millisecond radio pulsars. With the second data release of the European Pulsar Timing Array, we focus on the most robust scenario, in which dark matter interacts only gravitationally with ordinary baryonic matter. Our results show that ultralight particles with masses 10^{-24.0} eV≲m≲10^{-23.3} eV cannot constitute 100% of the measured local dark matter density, but can have at most local density ρ≲0.3 GeV/cm^{3}.
Collapse
Affiliation(s)
- Clemente Smarra
- SISSA-International School for Advanced Studies, Via Bonomea 265, 34136, Trieste, Italy and INFN, Sezione di Trieste
- IFPU-Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
| | - Boris Goncharov
- Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy
- INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
| | - Enrico Barausse
- SISSA-International School for Advanced Studies, Via Bonomea 265, 34136, Trieste, Italy and INFN, Sezione di Trieste
- IFPU-Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
| | - J Antoniadis
- Institute of Astrophysics, FORTH, Nikolaou Plastira 100, 70013, Heraklion, Greece
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - S Babak
- Université Paris Cité CNRS, Astroparticule et Cosmologie, 75013 Paris, France
| | - A-S Bak Nielsen
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
- Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
| | - C G Bassa
- ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, The Netherlands
| | - A Berthereau
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Université d'Orléans/CNRS, 45071 Orléans Cedex 02, France
- Observatoire Radioastronomique de Nançay, Observatoire de Paris, Université PSL, Université d'Orléans, CNRS, 18330 Nançay, France
| | - M Bonetti
- Dipartimento di Fisica "G. Occhialini", Universitá degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INAF - Osservatorio Astronomico di Brera, via Brera 20, I-20121 Milano, Italy
| | - E Bortolas
- Dipartimento di Fisica "G. Occhialini", Universitá degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INAF - Osservatorio Astronomico di Brera, via Brera 20, I-20121 Milano, Italy
| | - P R Brook
- Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - M Burgay
- INAF - Osservatorio Astronomico di Cagliari, via della Scienza 5, 09047 Selargius (CA), Italy
| | - R N Caballero
- Hellenic Open University, School of Science and Technology, 26335 Patras, Greece
| | - A Chalumeau
- Dipartimento di Fisica "G. Occhialini", Universitá degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
| | - D J Champion
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - S Chanlaridis
- Institute of Astrophysics, FORTH, Nikolaou Plastira 100, 70013, Heraklion, Greece
| | - S Chen
- Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People's Republic of China
| | - I Cognard
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Université d'Orléans/CNRS, 45071 Orléans Cedex 02, France
- Observatoire Radioastronomique de Nançay, Observatoire de Paris, Université PSL, Université d'Orléans, CNRS, 18330 Nançay, France
| | - G Desvignes
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - M Falxa
- Université Paris Cité CNRS, Astroparticule et Cosmologie, 75013 Paris, France
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Université d'Orléans/CNRS, 45071 Orléans Cedex 02, France
| | - R D Ferdman
- School of Physics, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - A Franchini
- Dipartimento di Fisica "G. Occhialini", Universitá degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
| | - J R Gair
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muühlenberg 1, 14476 Potsdam, Germany
| | - E Graikou
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - J-M Grießmeier
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Université d'Orléans/CNRS, 45071 Orléans Cedex 02, France
- Observatoire Radioastronomique de Nançay, Observatoire de Paris, Université PSL, Université d'Orléans, CNRS, 18330 Nançay, France
| | - L Guillemot
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Université d'Orléans/CNRS, 45071 Orléans Cedex 02, France
- Observatoire Radioastronomique de Nançay, Observatoire de Paris, Université PSL, Université d'Orléans, CNRS, 18330 Nançay, France
| | - Y J Guo
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - H Hu
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - F Iraci
- INAF - Osservatorio Astronomico di Cagliari, via della Scienza 5, 09047 Selargius (CA), Italy
- Universitá di Cagliari, Dipartimento di Fisica, S.P. Monserrato-Sestu Km 0,700-09042 Monserrato (CA), Italy
| | - D Izquierdo-Villalba
- Dipartimento di Fisica "G. Occhialini", Universitá degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
| | - J Jang
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - J Jawor
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - G H Janssen
- ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, The Netherlands
- Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - A Jessner
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - R Karuppusamy
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - E F Keane
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - M J Keith
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M Kramer
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M A Krishnakumar
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
- Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
| | - K Lackeos
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - K J Lee
- Institute of Astrophysics, FORTH, Nikolaou Plastira 100, 70013, Heraklion, Greece
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
- Observatoire Radioastronomique de Nançay, Observatoire de Paris, Université PSL, Université d'Orléans, CNRS, 18330 Nançay, France
| | - K Liu
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - Y Liu
- Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - A G Lyne
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - J W McKee
- E.A. Milne Centre for Astrophysics, University of Hull, Cottingham Road, Kingston-upon-Hull, HU6 7RX, United Kingdom
- Centre of Excellence for Data Science, Artificial Intelligence and Modelling (DAIM), University of Hull, Cottingham Road, Kingston-upon-Hull, HU6 7RX, United Kingdom
| | - R A Main
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - M B Mickaliger
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - I C Niţu
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - A Parthasarathy
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
| | - B B P Perera
- Arecibo Observatory, HC3 Box 53995, Arecibo, Puerto Rico 00612
| | - D Perrodin
- INAF - Osservatorio Astronomico di Cagliari, via della Scienza 5, 09047 Selargius (CA), Italy
| | - A Petiteau
- Université Paris Cité CNRS, Astroparticule et Cosmologie, 75013 Paris, France
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - N K Porayko
- Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
- Dipartimento di Fisica "G. Occhialini", Universitá degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
| | - A Possenti
- INAF - Osservatorio Astronomico di Cagliari, via della Scienza 5, 09047 Selargius (CA), Italy
| | | | - A Samajdar
- Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany
| | - S A Sanidas
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - A Sesana
- Dipartimento di Fisica "G. Occhialini", Universitá degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INAF - Osservatorio Astronomico di Brera, via Brera 20, I-20121 Milano, Italy
| | - G Shaifullah
- Dipartimento di Fisica "G. Occhialini", Universitá degli Studi di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
- INAF - Osservatorio Astronomico di Cagliari, via della Scienza 5, 09047 Selargius (CA), Italy
| | - L Speri
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muühlenberg 1, 14476 Potsdam, Germany
| | - R Spiewak
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - B W Stappers
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - S C Susarla
- Ollscoil na Gaillimhe-University of Galway, University Road, Galway H91 TK33, Ireland
| | - G Theureau
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Université d'Orléans/CNRS, 45071 Orléans Cedex 02, France
- Observatoire Radioastronomique de Nançay, Observatoire de Paris, Université PSL, Université d'Orléans, CNRS, 18330 Nançay, France
- Laboratoire Univers et Théories LUTh, Observatoire de Paris, Université PSL, CNRS, Université de Paris, 92190 Meudon, France
| | - C Tiburzi
- INAF - Osservatorio Astronomico di Cagliari, via della Scienza 5, 09047 Selargius (CA), Italy
| | - E van der Wateren
- ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, The Netherlands
- Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - A Vecchio
- Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | - J Wang
- Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
- Ruhr University Bochum, Faculty of Physics and Astronomy, Astronomical Institute (AIRUB), 44780 Bochum, Germany
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - L Wang
- Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Z Wu
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
2
|
Qiu YC, Wang JW, Yanagida TT. High-Quality Axions in a Class of Chiral U(1) Gauge Theories. PHYSICAL REVIEW LETTERS 2023; 131:071802. [PMID: 37656839 DOI: 10.1103/physrevlett.131.071802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/19/2023] [Indexed: 09/03/2023]
Abstract
We show that there are many candidates for the quintessence and/or the QCD axions in a class of chiral U(1) gauge theories. Their qualities are high enough to serve as the dark energy and/or to solve the strong CP problem. Interestingly, the high quality of axion is guaranteed by the gauged U(1) and Z_{2N} symmetries and hence free from the nonperturbative quantum gravity corrections. Furthermore, our mechanism can be easily applied to the Fuzzy dark matter axion scenarios.
Collapse
Affiliation(s)
- Yu-Cheng Qiu
- Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, 520 Shengrong Road, Shanghai 201210, China
| | - Jin-Wei Wang
- Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, 520 Shengrong Road, Shanghai 201210, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tsutomu T Yanagida
- Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, 520 Shengrong Road, Shanghai 201210, China
- Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
| |
Collapse
|
3
|
Stadnik YV. Searching for Ultralight Scalar Dark Matter with Muonium and Muonic Atoms. PHYSICAL REVIEW LETTERS 2023; 131:011001. [PMID: 37478439 DOI: 10.1103/physrevlett.131.011001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/26/2023] [Indexed: 07/23/2023]
Abstract
Ultralight scalar dark matter may induce apparent oscillations of the muon mass, which may be directly probed via temporal shifts in the spectra of muonium and muonic atoms. Existing datasets and ongoing spectroscopy measurements with muonium are capable of probing scalar-muon interactions that are up to 12 orders of magnitude more stringent than astrophysical bounds. Ongoing free-fall experiments with muonium can probe forces associated with the exchange of virtual ultralight scalar bosons between muons and standard-model particles, offering up to 5 orders of magnitude improvement in sensitivity over complementary laboratory and astrophysical bounds.
Collapse
Affiliation(s)
- Yevgeny V Stadnik
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Bolton JS, Caputo A, Liu H, Viel M. Comparison of Low-Redshift Lyman-α Forest Observations to Hydrodynamical Simulations with Dark Photon Dark Matter. PHYSICAL REVIEW LETTERS 2022; 129:211102. [PMID: 36461958 DOI: 10.1103/physrevlett.129.211102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Recent work has suggested that an additional ≲6.9 eV per baryon of heating in the intergalactic medium is needed to reconcile hydrodynamical simulations with Lyman-α forest absorption line widths at redshift z≃0.1. Resonant conversion of dark photon dark matter into low frequency photons is a viable source of such heating. We perform the first hydrodynamical simulations including dark photon heating and show that dark photons with mass m_{A^{'}}∼8×10^{-14} eV c^{-2} and kinetic mixing ε∼5×10^{-15} can alleviate the heating excess. A prediction of this model is a nonstandard thermal history for underdense gas at z≳3.
Collapse
Affiliation(s)
- James S Bolton
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Andrea Caputo
- School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hongwan Liu
- Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, New York 10003, USA
- Department of Physics, Princeton University, Princeton, New Jersey, 08544, USA
| | - Matteo Viel
- SISSA-International School for Advanced Studies, Via Bonomea 265, I-34136 Trieste, Italy
- IFPU, Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34151 Trieste, Italy
- INFN, Sezione di Trieste, Via Valerio 2, I-34127 Trieste, Italy
- INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34143 Trieste, Italy
| |
Collapse
|
5
|
Cyncynates D, Simon O, Thompson JO, Weiner ZJ. Nonperturbative structure in coupled axion sectors and implications for direct detection. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.083503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Sun S, Yang XY, Zhang YL. Pulsar timing residual induced by wideband ultralight dark matter with spin 0,1,2. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.066006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Boudon A, Brax P, Valageas P. Subsonic accretion and dynamical friction for a black hole moving through a self-interacting scalar dark matter cloud. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.043507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Schwabe B, Niemeyer JC. Deep Zoom-In Simulation of a Fuzzy Dark Matter Galactic Halo. PHYSICAL REVIEW LETTERS 2022; 128:181301. [PMID: 35594112 DOI: 10.1103/physrevlett.128.181301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Fuzzy dark matter (FDM) made of ultralight bosonic particles is a viable alternative to cold dark matter with clearly distinguishable small-scale features in collapsed structures. On large scales, it behaves gravitationally like cold dark matter deviating only by a cutoff in the initial power spectrum and can be studied using N-body methods. In contrast, wave interference effects near the de Broglie scale result in new phenomena unique to FDM. Interfering modes in filaments and halos yield a stochastically oscillating granular structure which condenses into solitonic cores during halo formation. Investigating these highly nonlinear wave phenomena requires the spatially resolved numerical integration of the Schrödinger equation. In previous papers we introduced a hybrid zoom-in scheme that combines N-body methods to model the large-scale gravitational potential around and the mass accretion onto pre-selected halos with simulations of the Schrödinger-Poisson equation to capture wave-like effects inside these halos. In this work, we present a new, substantially improved reconstruction method for the wave function inside of previously collapsed structures. We demonstrate its capabilities with a deep zoom-in simulation of a well-studied sub-L_{*}-sized galactic halo from cosmological initial conditions. With a particle mass of m=2.5×10^{-22} eV and halo mass M_{vir}=1.7×10^{11} M_{⊙} in a (60 h^{-1} comoving Mpc)^{3} cosmological box, it reaches an effective resolution of 20 comoving pc. This pushes the values of m and M accessible to simulations significantly closer to those relevant for studying galaxy evolution in the allowed range of FDM masses.
Collapse
Affiliation(s)
- Bodo Schwabe
- CAPA and Departamento de Física Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain and Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany
| | - Jens C Niemeyer
- Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
9
|
Rogers KK, Dvorkin C, Peiris HV. Limits on the Light Dark Matter-Proton Cross Section from Cosmic Large-Scale Structure. PHYSICAL REVIEW LETTERS 2022; 128:171301. [PMID: 35570432 DOI: 10.1103/physrevlett.128.171301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
We set the strongest limits to date on the velocity-independent dark matter (DM)-proton cross section σ for DM masses m=10 keV to 100 GeV, using large-scale structure traced by the Lyman-alpha forest: e.g., a 95% lower limit σ<6×10^{-30} cm^{2}, for m=100 keV. Our results complement direct detection, which has limited sensitivity to sub-GeV DM. We use an emulator of cosmological simulations, combined with data from the smallest cosmological scales used to date, to model and search for the imprint of primordial DM-proton collisions. Cosmological bounds are improved by up to a factor of 25.
Collapse
Affiliation(s)
- Keir K Rogers
- Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4, Canada
| | - Cora Dvorkin
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Hiranya V Peiris
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova University Center, Stockholm 10691, Sweden
| |
Collapse
|
10
|
Roy R, Vagnozzi S, Visinelli L. Superradiance evolution of black hole shadows revisited. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.083002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
D'Agnolo RT, Teresi D. Sliding Naturalness: New Solution to the Strong-CP and Electroweak-Hierarchy Problems. PHYSICAL REVIEW LETTERS 2022; 128:021803. [PMID: 35089766 DOI: 10.1103/physrevlett.128.021803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
We present a novel framework to solve simultaneously the electroweak-hierarchy problem and the strong-CP problem. A small but finite Higgs vacuum expectation value and a small θ angle are selected after the QCD phase transition, without relying on the Peccei-Quinn mechanism or other traditional solutions. We predict a distinctive pattern of correlated signals at hadronic EDM, fuzzy dark matter, and axion experiments.
Collapse
Affiliation(s)
- Raffaele Tito D'Agnolo
- Institut de Physique Théorique, Université Paris Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Daniele Teresi
- CERN, Theoretical Physics Department, 1211 Geneva 23, Switzerland
| |
Collapse
|
12
|
Boyanovsky D, Rai M, Chen L. Ultralight dark matter or dark radiation cosmologically produced from infrared dressing. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.123552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Bar N, Blas D, Blum K, Kim H. Assessing the Fornax globular cluster timing problem in different models of dark matter. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.043021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Nadler EO, Drlica-Wagner A, Bechtol K, Mau S, Wechsler RH, Gluscevic V, Boddy K, Pace AB, Li TS, McNanna M, Riley AH, García-Bellido J, Mao YY, Green G, Burke DL, Peter A, Jain B, Abbott TMC, Aguena M, Allam S, Annis J, Avila S, Brooks D, Carrasco Kind M, Carretero J, Costanzi M, da Costa LN, De Vicente J, Desai S, Diehl HT, Doel P, Everett S, Evrard AE, Flaugher B, Frieman J, Gerdes DW, Gruen D, Gruendl RA, Gschwend J, Gutierrez G, Hinton SR, Honscheid K, Huterer D, James DJ, Krause E, Kuehn K, Kuropatkin N, Lahav O, Maia MAG, Marshall JL, Menanteau F, Miquel R, Palmese A, Paz-Chinchón F, Plazas AA, Romer AK, Sanchez E, Scarpine V, Serrano S, Sevilla-Noarbe I, Smith M, Soares-Santos M, Suchyta E, Swanson MEC, Tarle G, Tucker DL, Walker AR, Wester W. Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies. PHYSICAL REVIEW LETTERS 2021; 126:091101. [PMID: 33750144 DOI: 10.1103/physrevlett.126.091101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and marginalizes over uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm and yield the strongest cosmological constraints to date on particle models of warm, interacting, and fuzzy dark matter. At 95% confidence, we report limits on (i) the mass of thermal relic warm DM, m_{WDM}>6.5 keV (free-streaming length, λ_{fs}≲10h^{-1} kpc), (ii) the velocity-independent DM-proton scattering cross section, σ_{0}<8.8×10^{-29} cm^{2} for a 100 MeV DM particle mass [DM-proton coupling, c_{p}≲(0.3 GeV)^{-2}], and (iii) the mass of fuzzy DM, m_{ϕ}>2.9×10^{-21} eV (de Broglie wavelength, λ_{dB}≲0.5 kpc). These constraints are complementary to other observational and laboratory constraints on DM properties.
Collapse
Affiliation(s)
- E O Nadler
- Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA
- Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Drlica-Wagner
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
- Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA
- Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA
| | - K Bechtol
- Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706-1390, USA
| | - S Mau
- Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA
- Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, California 94305, USA
| | - R H Wechsler
- Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA
- Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - V Gluscevic
- University of Southern California, Department of Physics and Astronomy, 825 Bloom Walk ACB 439, Los Angeles, California 90089-0484, USA
| | - K Boddy
- Theory Group, Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - A B Pace
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15312, USA
| | - T S Li
- Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, New Jersey 08544, USA
- Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, California 91101, USA
| | - M McNanna
- Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706-1390, USA
| | - A H Riley
- George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - J García-Bellido
- Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Y-Y Mao
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - G Green
- Max Planck Institute for Astronomy, Königstuhl 17 D-69117, Heidelberg, Germany
| | - D L Burke
- Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Peter
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Astronomy, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - B Jain
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - T M C Abbott
- Cerro Tololo Inter-American Observatory, NSF's National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile
| | - M Aguena
- Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, 05314-970, Brazil
- Laboratório Interinstitucional de e-Astronomia-LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
| | - S Allam
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| | - J Annis
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| | - S Avila
- Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - D Brooks
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - M Carrasco Kind
- Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, Illinois 61801, USA
| | - J Carretero
- Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain
| | - M Costanzi
- INAF-Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34143 Trieste, Italy
- Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
| | - L N da Costa
- Laboratório Interinstitucional de e-Astronomia-LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
- Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
| | - J De Vicente
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - S Desai
- Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
| | - H T Diehl
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| | - P Doel
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - S Everett
- Santa Cruz Institute for Particle Physics, Santa Cruz, California 95064, USA
| | - A E Evrard
- Department of Astronomy, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - B Flaugher
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| | - J Frieman
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
- Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - D W Gerdes
- Department of Astronomy, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - D Gruen
- Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA
- Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - R A Gruendl
- Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, Illinois 61801, USA
| | - J Gschwend
- Laboratório Interinstitucional de e-Astronomia-LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
- Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
| | - G Gutierrez
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| | - S R Hinton
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia
| | - K Honscheid
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - D Huterer
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - D J James
- Center for Astrophysics, Harvard and Smithsonian, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - E Krause
- Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721-0065, USA
| | - K Kuehn
- Australian Astronomical Optics, Macquarie University, North Ryde, New South Wales 2113, Australia
- Lowell Observatory, 1400 Mars Hill Road, Flagstaff, Arizona 86001, USA
| | - N Kuropatkin
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| | - O Lahav
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - M A G Maia
- Laboratório Interinstitucional de e-Astronomia-LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
- Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
| | - J L Marshall
- George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - F Menanteau
- Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, Illinois 61801, USA
| | - R Miquel
- Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
| | - A Palmese
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
- Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - F Paz-Chinchón
- National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, Illinois 61801, USA
- Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom
| | - A A Plazas
- Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, New Jersey 08544, USA
| | - A K Romer
- Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - E Sanchez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - V Scarpine
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| | - S Serrano
- Institut d'Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
- Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain
| | - I Sevilla-Noarbe
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - M Smith
- School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - M Soares-Santos
- Brandeis University, Physics Department, 415 South Street, Waltham, Massachusetts 02453, USA
| | - E Suchyta
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M E C Swanson
- National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, Illinois 61801, USA
| | - G Tarle
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - D L Tucker
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| | - A R Walker
- Cerro Tololo Inter-American Observatory, NSF's National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile
| | - W Wester
- Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
| |
Collapse
|
15
|
Rogers KK, Peiris HV. Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest. PHYSICAL REVIEW LETTERS 2021; 126:071302. [PMID: 33666479 DOI: 10.1103/physrevlett.126.071302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
We present a new bound on the ultralight axion (ULA) dark matter mass m_{a}, using the Lyman-alpha forest to look for suppressed cosmic structure growth: a 95% lower limit m_{a}>2×10^{-20} eV. This strongly disfavors (>99.7% credibility) the canonical ULA with 10^{-22} eV<m_{a}<10^{-21} eV, motivated by the string axiverse and solutions to possible tensions in the cold dark matter model. We strengthen previous equivalent bounds by about an order of magnitude. We demonstrate the robustness of our results using an optimized emulator of improved hydrodynamical simulations.
Collapse
Affiliation(s)
- Keir K Rogers
- Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova University Center, Stockholm 10691, Sweden
| | - Hiranya V Peiris
- Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova University Center, Stockholm 10691, Sweden
- Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
16
|
Nakai Y, Namba R, Wang Z. Light dark photon dark matter from inflation. JOURNAL OF HIGH ENERGY PHYSICS : JHEP 2020; 2020:170. [PMID: 33390726 PMCID: PMC7768992 DOI: 10.1007/jhep12(2020)170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/16/2020] [Indexed: 05/29/2023]
Abstract
We discuss the possibility of producing a light dark photon dark matter through a coupling between the dark photon field and the inflaton. The dark photon with a large wavelength is efficiently produced due to the inflaton motion during inflation and becomes non-relativistic before the time of matter-radiation equality. We compute the amount of production analytically. The correct relic abundance is realized with a dark photon mass extending down to 10 -21 eV.
Collapse
Affiliation(s)
- Yuichiro Nakai
- Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ryo Namba
- Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ziwei Wang
- Department of Physics, McGill University, Montréal, QC H3A 2T8 Canada
| |
Collapse
|
17
|
Kennedy CJ, Oelker E, Robinson JM, Bothwell T, Kedar D, Milner WR, Marti GE, Derevianko A, Ye J. Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons. PHYSICAL REVIEW LETTERS 2020; 125:201302. [PMID: 33258619 DOI: 10.1103/physrevlett.125.201302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
We conduct frequency comparisons between a state-of-the-art strontium optical lattice clock, a cryogenic crystalline silicon cavity, and a hydrogen maser to set new bounds on the coupling of ultralight dark matter to standard model particles and fields in the mass range of 10^{-16}-10^{-21} eV. The key advantage of this two-part ratio comparison is the differential sensitivity to time variation of both the fine-structure constant and the electron mass, achieving a substantially improved limit on the moduli of ultralight dark matter, particularly at higher masses than typical atomic spectroscopic results. Furthermore, we demonstrate an extension of the search range to even higher masses by use of dynamical decoupling techniques. These results highlight the importance of using the best-performing atomic clocks for fundamental physics applications, as all-optical timescales are increasingly integrated with, and will eventually supplant, existing microwave timescales.
Collapse
Affiliation(s)
- Colin J Kennedy
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| | - Eric Oelker
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| | - John M Robinson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| | - Tobias Bothwell
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| | - Dhruv Kedar
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| | - William R Milner
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| | - G Edward Marti
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Andrei Derevianko
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| |
Collapse
|
18
|
Chan JHH, Schive HY, Wong SK, Chiueh T, Broadhurst T. Multiple Images and Flux Ratio Anomaly of Fuzzy Gravitational Lenses. PHYSICAL REVIEW LETTERS 2020; 125:111102. [PMID: 32975981 DOI: 10.1103/physrevlett.125.111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/23/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Extremely light bosonic wave dark matter (ψDM) is an emerging dark matter candidate contesting the conventional cold dark matter paradigm and a model subject to intense scrutiny of late. This work for the first time reports testable salient features pertinent to gravitational lenses of ψDM halos. ψDM halos are distinctly filled with large-amplitude, small-scale density fluctuations with δρ/ρ_{halo}∼1 in form of density granules. This halo yields ubiquitous flux ratio anomalies of a few tens of percent, as is typically found for lensed quasars, and may also produce rare hexad and octad images for sources located in well-defined caustic zones. We have found new critical features appearing in the highly demagnified lens center when the halo has sufficiently high surface density near a very compact massive core.
Collapse
Affiliation(s)
- James H H Chan
- Institute of Physics, Laboratory of Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, Switzerland
| | - Hsi-Yu Schive
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan
- Center for Theoretical Physics, National Taiwan University, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
| | - Shing-Kwong Wong
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Tzihong Chiueh
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan
- Center for Theoretical Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Tom Broadhurst
- Department of Theoretical Physics, University of the Basque Country UPV/EHU, E-48080 Bilbao, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian (Gipuzkoa), Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|
19
|
Shimabukuro H, Ichiki K, Kadota K. 21 cm forest probes on axion dark matter in postinflationary Peccei-Quinn symmetry breaking scenarios. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.023522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Manley J, Wilson DJ, Stump R, Grin D, Singh S. Searching for Scalar Dark Matter with Compact Mechanical Resonators. PHYSICAL REVIEW LETTERS 2020; 124:151301. [PMID: 32357021 DOI: 10.1103/physrevlett.124.151301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Ultralight scalars are an interesting dark matter candidate that may produce a mechanical signal by modulating the Bohr radius. Recently it has been proposed to search for this signal using resonant-mass antennas. Here, we extend that approach to a new class of existing and near term compact (gram to kilogram mass) acoustic resonators composed of superfluid helium or single crystal materials, producing displacements that are accessible with opto- or electromechanical readout techniques. We find that a large unprobed parameter space can be accessed using ultrahigh-Q, cryogenically cooled centimeter-scale mechanical resonators operating at 100 Hz-100 MHz frequencies, corresponding to 10^{-12}-10^{-6} eV scalar mass range.
Collapse
Affiliation(s)
- Jack Manley
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Dalziel J Wilson
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Russell Stump
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Daniel Grin
- Department of Physics and Astronomy, Haverford College, Haverford, Pennsylvania 19041, USA
| | - Swati Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
21
|
Arvanitaki A, Dimopoulos S, Galanis M, Lehner L, Thompson JO, Van Tilburg K. Large-misalignment mechanism for the formation of compact axion structures: Signatures from the QCD axion to fuzzy dark matter. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.101.083014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Mocz P, Fialkov A, Vogelsberger M, Becerra F, Amin MA, Bose S, Boylan-Kolchin M, Chavanis PH, Hernquist L, Lancaster L, Marinacci F, Robles VH, Zavala J. First Star-Forming Structures in Fuzzy Cosmic Filaments. PHYSICAL REVIEW LETTERS 2019; 123:141301. [PMID: 31702225 DOI: 10.1103/physrevlett.123.141301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/07/2019] [Indexed: 06/10/2023]
Abstract
In hierarchical models of structure formation, the first galaxies form in low-mass dark matter potential wells, probing the behavior of dark matter on kiloparsec scales. Even though these objects are below the detection threshold of current telescopes, future missions will open an observational window into this emergent world. In this Letter, we investigate how the first galaxies are assembled in a "fuzzy" dark matter (FDM) cosmology where dark matter is an ultralight ∼10^{-22} eV boson and the primordial stars are expected to form along dense dark matter filaments. Using a first-of-its-kind cosmological hydrodynamical simulation, we explore the interplay between baryonic physics and unique wavelike features inherent to FDM. In our simulation, the dark matter filaments show coherent interference patterns on the boson de Broglie scale and develop cylindrical solitonlike cores, which are unstable under gravity and collapse into kiloparsec-scale spherical solitons. Features of the dark matter distribution are largely unaffected by the baryonic feedback. On the contrary, the distributions of gas and stars, which do form along the entire filament, exhibit central cores imprinted by dark matter-a smoking gun signature of FDM.
Collapse
Affiliation(s)
- Philip Mocz
- Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, New Jersey 08544, USA
| | - Anastasia Fialkov
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - Mark Vogelsberger
- Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Fernando Becerra
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - Mustafa A Amin
- Physics and Astronomy Department, Rice University, Houston, Texas 77005-1827, USA
| | - Sownak Bose
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - Michael Boylan-Kolchin
- Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, Texas 78712-1205, USA
| | - Pierre-Henri Chavanis
- Laboratoire de Physique Théorique, Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse, France
| | - Lars Hernquist
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - Lachlan Lancaster
- Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, New Jersey 08544, USA
| | - Federico Marinacci
- Department of Physics and Astronomy, University of Bologna, via Gobetti 93/2, 40129 Bologna, Italy
| | - Victor H Robles
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Jesús Zavala
- Center for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland
| |
Collapse
|
23
|
Tenkanen T. Dark Matter from Scalar Field Fluctuations. PHYSICAL REVIEW LETTERS 2019; 123:061302. [PMID: 31491173 DOI: 10.1103/physrevlett.123.061302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Dark matter (DM) may have its origin in a pre-big-bang epoch, the cosmic inflation. Here, we consider for the first time a broad class of scenarios where a massive free scalar field unavoidably reaches an equilibrium between its classical and quantum dynamics in a characteristic timescale during inflation and sources the DM density. The study gives the abundance and perturbation spectrum of any DM component sourced by the scalar field. We show that this class of scenarios generically predicts enhanced structure formation, allowing one to test models where DM interacts with matter only gravitationally.
Collapse
Affiliation(s)
- Tommi Tenkanen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
24
|
Marsh DJE, Niemeyer JC. Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II. PHYSICAL REVIEW LETTERS 2019; 123:051103. [PMID: 31491323 DOI: 10.1103/physrevlett.123.051103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/16/2019] [Indexed: 06/10/2023]
Abstract
The fuzzy dark matter (FDM) model treats DM as a bosonic field with an astrophysically large de Broglie wavelength. A striking feature of this model is O(1) fluctuations in the dark matter density on time scales which are shorter than the gravitational timescale. Including, for the first time, the effect of core oscillations, we demonstrate how such fluctuations lead to heating of star clusters and, thus, an increase in their size over time. From the survival of the old star cluster in Eridanus II, we infer m_{a}≳0.6→1×10^{-19} eV within modeling uncertainty if FDM is to compose all of the DM and derive constraints on the FDM fraction at lower masses. The subhalo mass function in the Milky Way implies m_{a}≳0.8×10^{-21} eV to successfully form Eridanus II. The region between 10^{-21} and 10^{-20} eV is affected by narrow band resonances. However, the limited applicability of the diffusion approximation means that some of this region may still be consistent with observations of Eridanus II.
Collapse
Affiliation(s)
- David J E Marsh
- Institut für Astrophysik, Georg-August Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jens C Niemeyer
- Institut für Astrophysik, Georg-August Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|
25
|
|
26
|
Davoudiasl H, Denton PB. Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87^{*}. PHYSICAL REVIEW LETTERS 2019; 123:021102. [PMID: 31386502 DOI: 10.1103/physrevlett.123.021102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 06/10/2023]
Abstract
The initial data from the Event Horizon Telescope (EHT) on M87^{*}, the supermassive black hole at the center of the M87 Galaxy, provide direct observational information on its mass, spin, and accretion disk properties. A combination of the EHT data and other constraints provides evidence that M87^{*} has a mass ∼6.5×10^{9} M_{⊙}. EHT also inferred the dimensionless spin parameter |a^{*}|≳0.5 from jet properties; a separate recent analysis using only the light from near M87^{*} as measured by the EHT Collaboration found |a^{*}|=0.9±0.1. These determinations disfavor ultralight bosons of mass μ_{b}∈(0.85,4.6)×10^{-21} eV for spin-one bosons and μ_{b}∈(2.9,4.6)×10^{-21} eV for spin-zero bosons, within the range considered for fuzzy dark matter, invoked to explain dark matter distribution on approximately kiloparsec scales. Future observations of M87^{*} could be expected to strengthen our conclusions.
Collapse
Affiliation(s)
- Hooman Davoudiasl
- Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Peter B Denton
- Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
27
|
Fujita T, Tazaki R, Toma K. Hunting Axion Dark Matter with Protoplanetary Disk Polarimetry. PHYSICAL REVIEW LETTERS 2019; 122:191101. [PMID: 31144965 DOI: 10.1103/physrevlett.122.191101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/12/2019] [Indexed: 06/09/2023]
Abstract
We find that the polarimetric observations of protoplanetary disks are useful to search for ultralight axion dark matter. Axion dark matter predicts the rotation of the linear polarization plane of propagating light, and protoplanetary disks are ideal targets to observe it. We show that a recent observation puts the tightest constraint on the axion-photon coupling constant for an axion mass m≲10^{-21} eV.
Collapse
Affiliation(s)
- Tomohiro Fujita
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
- Départment de Physique Théorique and Center for Astroparticle Physics, Université de Genève, Quai E.Ansermet 24, CH-1211 Genève 4, Switzerland
| | - Ryo Tazaki
- Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kenji Toma
- Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
28
|
Farzan Y, Palomares-Ruiz S. Flavor of cosmic neutrinos preserved by ultralight dark matter. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.051702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Li X, Hui L, Bryan GL. Numerical and perturbative computations of the fuzzy dark matter model. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.063509] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
|
31
|
Levkov DG, Panin AG, Tkachev II. Gravitational Bose-Einstein Condensation in the Kinetic Regime. PHYSICAL REVIEW LETTERS 2018; 121:151301. [PMID: 30362790 DOI: 10.1103/physrevlett.121.151301] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/11/2018] [Indexed: 06/08/2023]
Abstract
We study Bose-Einstein condensation and the formation of Bose stars in virialized dark matter halos and miniclusters by universal gravitational interactions. We prove that this phenomenon does occur and it is described by a kinetic equation. We give an expression for the condensation time. Our results suggest that Bose stars may form kinetically in mainstream dark matter models such as invisible QCD axions and fuzzy dark matter.
Collapse
Affiliation(s)
- D G Levkov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - A G Panin
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - I I Tkachev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
32
|
Bertone G, Tait TMP. A new era in the search for dark matter. Nature 2018; 562:51-56. [DOI: 10.1038/s41586-018-0542-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/06/2018] [Indexed: 11/09/2022]
|
33
|
Veltmaat J, Niemeyer JC, Schwabe B. Formation and structure of ultralight bosonic dark matter halos. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.98.043509] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
|
35
|
Choi K, Kim H, Sekiguchi T. Late-Time Magnetogenesis Driven by Axionlike Particle Dark Matter and a Dark Photon. PHYSICAL REVIEW LETTERS 2018; 121:031102. [PMID: 30085810 DOI: 10.1103/physrevlett.121.031102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/18/2018] [Indexed: 06/08/2023]
Abstract
We propose a mechanism generating primordial magnetic fields after the e^{+}e^{-} annihilations. Our mechanism involves an ultralight axionlike particle (ALP) which constitutes the dark matter and a dark U(1)_{X} gauge boson introduced to bypass the obstacle placed by the conductivity of cosmic plasma. In our scheme, a coherently oscillating ALP amplifies the dark photon field, and part of the amplified dark photon field is concurrently converted to the ordinary magnetic field through the ALP-induced magnetic mixing. For the relevant ALP mass range 10^{-21} eV≲m_{ϕ}≲10^{-17} eV, our mechanism can generate B∼10^{-24} G(m_{ϕ}/10^{-17} eV)^{5/4} with a coherent length λ∼(m_{ϕ}/10^{-17} eV)^{-1/2} kpc, which is large enough to provide a seed of the galactic magnetic fields. The mechanism also predicts a dark U(1)_{X} electromagnetic field E_{X}∼B_{X}∼80 nG(m_{ϕ}/10^{-17} eV)^{-1/4}, which can result in interesting astrophysical or cosmological phenomena by inducing the mixings between the ALP, ordinary photon, and dark photon states.
Collapse
Affiliation(s)
- Kiwoon Choi
- Institute for Basic Science, Center for Theoretical Physics of the Universe, Daejeon 34051, South Korea
| | - Hyungjin Kim
- Institute for Basic Science, Center for Theoretical Physics of the Universe, Daejeon 34051, South Korea
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Toyokazu Sekiguchi
- Institute for Basic Science, Center for Theoretical Physics of the Universe, Daejeon 34051, South Korea
- Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Buschmann M, Kopp J, Safdi BR, Wu CL. Stellar Wakes from Dark Matter Subhalos. PHYSICAL REVIEW LETTERS 2018; 120:211101. [PMID: 29883177 DOI: 10.1103/physrevlett.120.211101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ∼10^{7} M_{⊙} or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.
Collapse
Affiliation(s)
- Malte Buschmann
- Leinweber Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
- PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Joachim Kopp
- PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Benjamin R Safdi
- Leinweber Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chih-Liang Wu
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
37
|
Brdar V, Kopp J, Liu J, Prass P, Wang XP. Fuzzy dark matter and nonstandard neutrino interactions. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.97.043001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Abstract
This is a review on the brief history of the scalar field dark matter model also known as fuzzy
dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass m = O(10-22)eV condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than galaxies the dark matter acts like cold dark matter, while below the scale quantum pressure from the uncertainty principle suppresses the smaller structure formation so that it can resolve the small scale crisis of the conventional cold dark matter model.
Collapse
|
39
|
Kobayashi T, Murgia R, De Simone A, Iršič V, Viel M. Lyman-
α
constraints on ultralight scalar dark matter: Implications for the early and late universe. Int J Clin Exp Med 2017. [DOI: 10.1103/physrevd.96.123514] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|