1
|
Gautam B, Lintuvuori JS. Microswimmers Knead Nematics into Cholesterics. PHYSICAL REVIEW LETTERS 2024; 132:238301. [PMID: 38905647 DOI: 10.1103/physrevlett.132.238301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024]
Abstract
The hydrodynamic stresses created by active particles can destabilize orientational order present in the system. This is manifested, for example, by the appearance of a bend instability in active nematics or in quasi-two-dimensional living liquid crystals consisting of swimming bacteria in thin nematic films. Using large-scale hydrodynamics simulations, we study a system consisting of spherical microswimmers within a three-dimensional nematic liquid crystal. We observe a spontaneous chiral symmetry breaking, where the uniform nematic state is kneaded into a continuously twisting state, corresponding to a helical director configuration akin to a cholesteric liquid crystal. The transition arises from the hydrodynamic coupling between the liquid crystalline elasticity and the swimmer flow fields, leading to a twist-bend instability of the nematic order. It is observed for both pusher (extensile) and puller (contractile) swimmers. Further, we show that the liquid crystal director and particle trajectories are connected: in the cholesteric state the particle trajectories become helicoidal.
Collapse
Affiliation(s)
- Bhavesh Gautam
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | | |
Collapse
|
2
|
Thampi SP, Stratford K, Henrich O. Simulating dynamics of ellipsoidal particles using lattice Boltzmann method. Phys Rev E 2024; 109:065302. [PMID: 39020973 DOI: 10.1103/physreve.109.065302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
Anisotropic particles are often encountered in different fields of soft matter and complex fluids. In this work, we present an implementation of the coupled hydrodynamics of solid ellipsoidal particles and the surrounding fluid using the lattice Boltzmann method. A standard link-based mechanism is used to implement the solid-fluid boundary conditions. We develop an implicit method to update the position and orientation of the ellipsoid. This exploits the relations between the quaternion which describes the ellipsoid's orientation and the ellipsoid's angular velocity to obtain a stable and robust dynamic update. The proposed algorithm is validated by looking at four scenarios: (i) the steady translational velocity of a spheroid subject to an external force in different orientations, (ii) the drift of an inclined spheroid subject to an imposed force, (iii) three-dimensional rotational motions in a simple shear flow (Jeffrey's orbits), and (iv) developed fluid flows and self-propulsion exhibited by a spheroidal microswimmer. In all cases the comparison of numerical results shows good agreement with known analytical solutions, irrespective of the choice of the fluid properties, geometrical parameters, and lattice Boltzmann model, thus demonstrating the robustness of the proposed algorithm.
Collapse
|
3
|
Kobayashi T, Jung G, Matsuoka Y, Nakayama Y, Molina JJ, Yamamoto R. Direct numerical simulations of a microswimmer in a viscoelastic fluid. SOFT MATTER 2023; 19:7109-7121. [PMID: 37694444 DOI: 10.1039/d3sm00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This study presents the application of the smoothed profile (SP) method to perform direct numerical simulations for the motion of both passive and active "squirming" particles in Newtonian and viscoelastic fluids. We found that fluid elasticity has a significant impact on both the transient behavior and the steady-state velocity of the particles. Specifically, we observe that the swirling flow generated by the squirmer's surface velocity significantly enhances their swimming speed as the Weissenberg number increases, regardless of the swimming type. Furthermore, we find that pushers outperform pullers in Oldroyd-B fluids, suggesting that the speed of a squirmer depends on the swimmer type. To understand the physical origin of the phenomenon of swirling flow enhancing the swimming speed, we investigate the velocity field and polymer conformation around non-swirling and swirling neutral squirmers in viscoelastic fluids. Our investigation reveals that the velocity field around the neutral swirling squirmers exhibits pusher-like extensional flow characteristics, as well as an asymmetric polymer conformation distribution, which gives rise to this increased propulsion. This is confirmed by the investigation of the force on a fixed squirmer, which revealed that the polymer stress, particularly its diagonal components, plays a critical role in enhancing the swimming speed of swirling squirmers in viscoelastic fluids. Additionally, our results demonstrate that the maximum swimming speeds of swirling squirmers occur at an intermediate value of the fluid viscosity ratio for all swimmer types. These findings have important implications for understanding the behavior of particles and micro-organisms in complex fluids.
Collapse
Affiliation(s)
- Takuya Kobayashi
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Gerhard Jung
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Yuki Matsuoka
- Corporate Engineering Center, Sumitomo Bakelite Co., Ltd, Shizuoka 426-0041, Japan
| | - Yasuya Nakayama
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - John J Molina
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.
| |
Collapse
|
4
|
Vats A, Yadav PK, Banerjee V, Puri S. Symbiotic dynamics in living liquid crystals. Phys Rev E 2023; 108:024701. [PMID: 37723723 DOI: 10.1103/physreve.108.024701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/22/2023] [Indexed: 09/20/2023]
Abstract
An amalgam of nematic liquid crystals and active matter, referred to as living liquid crystals, is a promising self-healing material with futuristic applications for targeted delivery of information and microcargo. We provide a phenomenological model to study the symbiotic pattern dynamics in this contemporary system using the Toner-Tu model for active matter (AM), the Landau-de Gennes free energy for liquid crystals (LCs), and an experimentally motivated coupling term that favours coalignment of the active and nematic components. Our extensive theoretical studies unfold two novel steady states, chimeras and solitons, with sharp regions of distinct orientational order that sweep through the coupled system in synchrony. The induced dynamics in the passive nematic is unprecedented. We show that the symbiotic dynamics of the AM and LC components can be exploited to induce and manipulate order in an otherwise disordered system.
Collapse
Affiliation(s)
- Aditya Vats
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Pradeep Kumar Yadav
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Varsha Banerjee
- Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
5
|
Spontaneous vortex formation by microswimmers with retarded attractions. Nat Commun 2023; 14:56. [PMID: 36599830 DOI: 10.1038/s41467-022-35427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Collective states of inanimate particles self-assemble through physical interactions and thermal motion. Despite some phenomenological resemblance, including signatures of criticality, the autonomous dynamics that binds motile agents into flocks, herds, or swarms allows for much richer behavior. Low-dimensional models have hinted at the crucial role played in this respect by perceived information, decision-making, and feedback, implying that the corresponding interactions are inevitably retarded. Here we present experiments on spherical Brownian microswimmers with delayed self-propulsion toward a spatially fixed target. We observe a spontaneous symmetry breaking to a transiently chiral dynamical state and concomitant critical behavior that do not rely on many-particle cooperativity. By comparison with the stochastic delay differential equation of motion of a single swimmer, we pinpoint the delay-induced effective synchronization of the swimmers with their own past as the key mechanism. Increasing numbers of swimmers self-organize into layers with pro- and retrograde orbital motion, synchronized and stabilized by steric, phoretic, and hydrodynamic interactions. Our results demonstrate how even most simple retarded interactions can foster emergent complex adaptive behavior in small active-particle ensembles.
Collapse
|
6
|
Ignés-Mullol J, Sagués F. Experiments with active and driven synthetic colloids in complex fluids. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Faidiuk Y, Skivka L, Zelena P, Tereshchenko O, Buluy O, Pergamenshchik VM, Nazarenko V. Anchoring-induced nonmonotonic velocity versus temperature dependence of motile bacteria in a lyotropic nematic liquid crystal. Phys Rev E 2021; 104:054603. [PMID: 34942701 DOI: 10.1103/physreve.104.054603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
The elastic and viscous properties of lyotropic chromonic liquid crystals have a very sharp, often exponential temperature dependence. Self-propelled bacteria swimming in this viscoelastic medium induce director deformations which can strongly influence their velocity, and we study the temperature behavior of their motility in the whole range of the nematic phase. We observe experimentally that, with increasing temperature, while the viscosity drops exponentially and the frequency of the flagellum rotation grows linearly, the swimmers' speed first conventionally increases but then, above some crossover temperature, slows down and at the same time bacteria-induced director distortions become visible. It is shown that the physics behind this temperature-driven effect is in a sharp rise in the ability of the bacterium's flagellum to induce director deformations. As temperature increases, the splay and bend elastic constants sharply decrease and the anchoring extrapolation length of the flagellum surface gets shorter and shorter. At the crossover temperature the resulting effective anchoring effect dominates the fast dropping viscosity and the distortion strengthens. As a result, a fraction of the torque the flagellum applies for the propulsion is spent for the elastic degrees of freedom, which results in a bacterium slowdown. To find the director distortions, the flagellum is presented as a collection of anchoring-induced elastic monopoles, and the bacterium velocity is found from the balance of the energy spent for the propulsion and the viscous drag and nematodynamic dissipation.
Collapse
Affiliation(s)
- Yu Faidiuk
- ESC Institute of Biology and Medicine, Taras Shevchenko National University, Kyiv 03022, Ukraine.,D.K. Zabolotny Institute of Microbiology and Virology, NASU, Kyiv 03680, Ukraine
| | - L Skivka
- ESC Institute of Biology and Medicine, Taras Shevchenko National University, Kyiv 03022, Ukraine
| | - P Zelena
- ESC Institute of Biology and Medicine, Taras Shevchenko National University, Kyiv 03022, Ukraine
| | | | - O Buluy
- Institute of Physics, NASU, Kyiv 03028, Ukraine
| | | | - V Nazarenko
- Institute of Physics, NASU, Kyiv 03028, Ukraine
| |
Collapse
|
8
|
Lavrentovich OD. Design of nematic liquid crystals to control microscale dynamics. LIQUID CRYSTALS REVIEWS 2021; 8:59-129. [PMID: 34956738 PMCID: PMC8698256 DOI: 10.1080/21680396.2021.1919576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 05/25/2023]
Abstract
The dynamics of small particles, both living such as swimming bacteria and inanimate, such as colloidal spheres, has fascinated scientists for centuries. If one could learn how to control and streamline their chaotic motion, that would open technological opportunities in the transformation of stored or environmental energy into systematic motion, with applications in micro-robotics, transport of matter, guided morphogenesis. This review presents an approach to command microscale dynamics by replacing an isotropic medium with a liquid crystal. Orientational order and associated properties, such as elasticity, surface anchoring, and bulk anisotropy, enable new dynamic effects, ranging from the appearance and propagation of particle-like solitary waves to self-locomotion of an active droplet. By using photoalignment, the liquid crystal can be patterned into predesigned structures. In the presence of the electric field, these patterns enable the transport of solid and fluid particles through nonlinear electrokinetics rooted in anisotropy of conductivity and permittivity. Director patterns command the dynamics of swimming bacteria, guiding their trajectories, polarity of swimming, and distribution in space. This guidance is of a higher level of complexity than a simple following of the director by rod-like microorganisms. Namely, the director gradients mediate hydrodynamic interactions of bacteria to produce an active force and collective polar modes of swimming. The patterned director could also be engraved in a liquid crystal elastomer. When an elastomer coating is activated by heat or light, these patterns produce a deterministic surface topography. The director gradients define an activation force that shapes the elastomer in a manner similar to the active stresses triggering flows in active nematics. The patterned elastomer substrates could be used to define the orientation of cells in living tissues. The liquid-crystal guidance holds a major promise in achieving the goal of commanding microscale active flows.
Collapse
Affiliation(s)
- Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Department of Physics, Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
9
|
Mandal S, Mazza MG. Multiparticle collision dynamics simulations of a squirmer in a nematic fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:64. [PMID: 33939056 PMCID: PMC8093181 DOI: 10.1140/epje/s10189-021-00072-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/16/2021] [Indexed: 05/26/2023]
Abstract
We study the dynamics of a squirmer in a nematic liquid crystal using the multiparticle collision dynamics (MPCD) method. A recently developed nematic MPCD method [Phys. Rev. E 99, 063319 (2019)] which employs a tensor order parameter to describe the spatial and temporal variations of the nematic order is used to simulate the suspending anisotropic fluid. Considering both nematodynamic effects (anisotropic viscosity and elasticity) and thermal fluctuations, in the present study, we couple the nematic MPCD algorithm with a molecular dynamics (MD) scheme for the squirmer. A unique feature of the proposed method is that the nematic order, the fluid, and the squirmer are all represented in a particle-based framework. To test the applicability of this nematic MPCD-MD method, we simulate the dynamics of a spherical squirmer with homeotropic surface anchoring conditions in a bulk domain. The importance of anisotropic viscosity and elasticity on the squirmer's speed and orientation is studied for different values of self-propulsion strength and squirmer type (pusher, puller or neutral). In sharp contrast to Newtonian fluids, the speed of the squirmer in a nematic fluid depends on the squirmer type. Interestingly, the speed of a strong pusher is smaller in the nematic fluid than for the Newtonian case. The orientational dynamics of the squirmer in the nematic fluid also shows a non-trivial dependence on the squirmer type. Our results compare well with existing experimental and numerical data. The full particle-based framework could be easily extended to model the dynamics of multiple squirmers in anisotropic fluids.
Collapse
Affiliation(s)
- Shubhadeep Mandal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | - Marco G Mazza
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany.
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, Loughborough, United Kingdom.
| |
Collapse
|
10
|
Sprenger AR, Shaik VA, Ardekani AM, Lisicki M, Mathijssen AJTM, Guzmán-Lastra F, Löwen H, Menzel AM, Daddi-Moussa-Ider A. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:58. [PMID: 32920676 DOI: 10.1140/epje/i2020-11980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 05/24/2023]
Abstract
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| | - Vaseem A Shaik
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Arnold J T M Mathijssen
- Department of Bioengineering, Stanford University, 443 Via Ortega, 94305, Stanford, CA, USA
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Francisca Guzmán-Lastra
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Av. Manuel Montt 367, Providencia, Santiago de Chile, Chile
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
11
|
Denniston C. Theory and simulation of objects in liquid crystals. ADVANCES IN PHYSICS: X 2020. [DOI: 10.1080/23746149.2020.1806728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Colin Denniston
- Department of Applied Mathematics and Department of Physics and Astronomy, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Mandal S, Mazza MG. Multiparticle collision dynamics for tensorial nematodynamics. Phys Rev E 2019; 99:063319. [PMID: 31330733 DOI: 10.1103/physreve.99.063319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 02/02/2023]
Abstract
Liquid crystals establish a nearly unique combination of thermodynamic, hydrodynamic, and topological behavior. This poses a challenge to their theoretical understanding and modeling. The arena where these effects come together is the mesoscopic (micron) scale. It is then important to develop models aimed at capturing this variety of dynamics. We have generalized the particle-based multiparticle collision dynamics (MPCD) method to model the dynamics of nematic liquid crystals. Following the Qian-Sheng theory [Phys. Rev. E 58, 7475 (1998)1063-651X10.1103/PhysRevE.58.7475] of nematics, the spatial and temporal variations of the nematic director field and order parameter are described by a tensor order parameter. The key idea is to assign tensorial degrees of freedom to each MPCD particle, whose mesoscopic average is the tensor order parameter. This nematic MPCD method includes backflow effect, velocity-orientation coupling, and thermal fluctuations. We validate the applicability of this method by testing (i) the nematic-isotropic phase transition, (ii) the flow alignment of the director in shear and Poiseuille flows, and (iii) the annihilation dynamics of a pair of line defects. We find excellent agreement with existing literature. We also investigate the flow field around a force dipole in a nematic liquid crystal, which represents the leading-order flow field around a force-free microswimmer. The anisotropy of the medium not only affects the magnitude of velocity field around the force dipole, but can also induce hydrodynamic torques depending on the orientation of dipole axis relative to director field. A force dipole experiences a hydrodynamic torque when the dipole axis is tilted with respect to the far-field director. The direction of hydrodynamic torque is such that the pusher- (or puller-) type force dipole tends to orient along (or perpendicular to) the director field. Our nematic MPCD method can have far-reaching implications not only in modeling of nematic flows, but also to study the motion of colloids and microswimmers immersed in an anisotropic medium.
Collapse
Affiliation(s)
- Shubhadeep Mandal
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Marco G Mazza
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.,Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
13
|
Pagès JM, Ignés-Mullol J, Sagués F. Anomalous Diffusion of Motile Colloids Dispersed in Liquid Crystals. PHYSICAL REVIEW LETTERS 2019; 122:198001. [PMID: 31144957 DOI: 10.1103/physrevlett.122.198001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
We study the superdiffusion of driven colloidal particles dispersed in a nematic liquid crystal. While motion is ballistic in the driving direction, our experiments show that transversal fluctuations become superdiffusive depending on the topological defect pattern around the inclusions. The phenomenon can be reproduced with different driving methods and propulsion speeds, while it is strongly dependent on particle size and temperature. We propose a mechanism based on the geometry of the liquid crystal backflow around the inclusions to justify the persistence of thermal fluctuations and to explain the observed temperature and particle size dependence of the superdiffusive behavior based on material and geometrical parameters.
Collapse
Affiliation(s)
- Josep M Pagès
- Departament de Ciència de Materials i Química Física, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Ferreiro-Córdova C, Toner J, Löwen H, Wensink HH. Long-time anomalous swimmer diffusion in smectic liquid crystals. Phys Rev E 2018; 97:062606. [PMID: 30011607 DOI: 10.1103/physreve.97.062606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 06/08/2023]
Abstract
The dynamics of self-locomotion of active particles in aligned or liquid crystalline fluids strongly deviates from that in simple isotropic media. We explore the long-time dynamics of a swimmer moving in a three-dimensional smectic liquid crystal and find that the mean-square displacement transverse to the director exhibits a distinct logarithmic tail at long times. The scaling is distinctly different from that in an isotropic or nematic fluid and hints at the subtle but important role of the director fluctuation spectrum in governing the long-time motility of active particles. Our findings are based on a generic hydrodynamic theory and Brownian dynamics computer simulation of a three-dimensional soft mesogen model.
Collapse
Affiliation(s)
- Claudia Ferreiro-Córdova
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Henricus H Wensink
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
15
|
Zöttl A, Stark H. Simulating squirmers with multiparticle collision dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:61. [PMID: 29766348 DOI: 10.1140/epje/i2018-11670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Multiparticle collision dynamics is a modern coarse-grained simulation technique to treat the hydrodynamics of Newtonian fluids by solving the Navier-Stokes equations. Naturally, it also includes thermal noise. Initially it has been applied extensively to spherical colloids or bead-spring polymers immersed in a fluid. Here, we review and discuss the use of multiparticle collision dynamics for studying the motion of spherical model microswimmers called squirmers moving in viscous fluids.
Collapse
Affiliation(s)
- Andreas Zöttl
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, UK.
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.
| | - Holger Stark
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| |
Collapse
|
16
|
Shen Z, Würger A, Lintuvuori JS. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:39. [PMID: 29594924 DOI: 10.1140/epje/i2018-11649-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/12/2018] [Indexed: 05/26/2023]
Abstract
Using lattice Boltzmann simulations we study the hydrodynamics of an active spherical particle near a no-slip wall. We develop a computational model for an active Janus particle, by considering different and independent mobilities on the two hemispheres and compare the behaviour to a standard squirmer model. We show that the topology of the far-field hydrodynamic nature of the active Janus particle is similar to the standard squirmer model, but in the near-field the hydrodynamics differ. In order to study how the near-field effects affect the interaction between the particle and a flat wall, we compare the behaviour of a Janus swimmer and a squirmer near a no-slip surface via extensive numerical simulations. Our results show generally a good agreement between these two models, but they reveal some key differences especially with low magnitudes of the squirming parameter [Formula: see text]. Notably the affinity of the particles to be trapped at a surface is increased for the active Janus particles when compared to standard squirmers. Finally, we find that when the particle is trapped on the surface, the velocity parallel to the surface exceeds the bulk swimming speed and scales linearly with [Formula: see text].
Collapse
Affiliation(s)
- Zaiyi Shen
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405, Talence, France
| | - Alois Würger
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405, Talence, France
| | | |
Collapse
|
17
|
Elementary Flow Field Profiles of Micro-Swimmers in Weakly Anisotropic Nematic Fluids: Stokeslet, Stresslet, Rotlet and Source Flows. FLUIDS 2018. [DOI: 10.3390/fluids3010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|