1
|
Goebel THW, Schuster V, Kwiatek G, Pandey K, Dresen G. A laboratory perspective on accelerating preparatory processes before earthquakes and implications for foreshock detectability. Nat Commun 2024; 15:5588. [PMID: 38961092 PMCID: PMC11222383 DOI: 10.1038/s41467-024-49959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Dynamic failure in the laboratory is commonly preceded by many foreshocks which accompany premonitory aseismic slip. Aseismic slip is also thought to govern earthquake nucleation in nature, yet, foreshocks are rare. Here, we examine how heterogeneity due to different roughness, damage and pore pressures affects premonitory slip and acoustic emission characteristics. High fluid pressures increase stiffness and reduce heterogeneity which promotes more rapid slip acceleration and shorter precursory periods, similar to the effect of low geometric heterogeneity on smooth faults. The associated acoustic emission activity in low-heterogeneity samples becomes increasingly dominated by earthquake-like double-couple focal mechanisms. The similarity of fluid pressure increase and roughness reduction suggests that increased stress and geometric homogeneity may substantially shorten the duration of foreshock activity. Gradual fault activation and extended foreshock activity is more likely observable on immature faults at shallow depth.
Collapse
Affiliation(s)
- Thomas H W Goebel
- University of Memphis, Center for Earthquake Research and Information, Memphis, TN, USA.
| | - Valerian Schuster
- German Research Centre for Geosciences (GFZ), Section 4.2 Geomechanics and Scientific Drilling, Potsdam, Germany
| | - Grzegorz Kwiatek
- German Research Centre for Geosciences (GFZ), Section 4.2 Geomechanics and Scientific Drilling, Potsdam, Germany
| | - Kiran Pandey
- University of Memphis, Center for Earthquake Research and Information, Memphis, TN, USA
| | - Georg Dresen
- German Research Centre for Geosciences (GFZ), Section 4.2 Geomechanics and Scientific Drilling, Potsdam, Germany
| |
Collapse
|
2
|
Szuszik C, Main IG, Kun F. Effect of the loading condition on the statistics of crackling noise accompanying the failure of porous rocks. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230528. [PMID: 38026039 PMCID: PMC10663801 DOI: 10.1098/rsos.230528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
We test the hypothesis that loading conditions affect the statistical features of crackling noise accompanying the failure of porous rocks by performing discrete element simulations of the tensile failure of model rocks and comparing the results to those of compressive simulations of the same samples. Cylindrical samples are constructed by sedimenting randomly sized spherical particles connected by beam elements representing the cementation of granules. Under a slowly increasing external tensile load, the cohesive contacts between particles break in bursts whose size fluctuates over a broad range. Close to failure breaking avalanches are found to localize on a highly stressed region where the catastrophic avalanche is triggered and the specimen breaks apart along a spanning crack. The fracture plane has a random position and orientation falling most likely close to the centre of the specimen perpendicular to the load direction. In spite of the strongly different strengths, degrees of 'brittleness' and spatial structure of damage of tensile and compressive failure of model rocks, our calculations revealed that the size, energy and duration of avalanches, and the waiting time between consecutive events all obey scale-free statistics with power law exponents which agree within their error bars in the two loading cases.
Collapse
Affiliation(s)
- Csanád Szuszik
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, PO Box 400, 4002 Debrecen, Hungary
| | - Ian G. Main
- School of Geosciences, University of Edinburgh, Edinburgh EH9 3FE, UK
| | - Ferenc Kun
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, PO Box 400, 4002 Debrecen, Hungary
- Institute for Nuclear Research (Atomki), PO Box 51, 4001 Debrecen, Hungary
| |
Collapse
|
3
|
Patton A, Goebel T, Kwiatek G, Davidsen J. Large-scale heterogeneities can alter the characteristics of compressive failure and accelerated seismic release. Phys Rev E 2023; 108:014131. [PMID: 37583189 DOI: 10.1103/physreve.108.014131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023]
Abstract
Externally stressed brittle rocks fail once the stress is sufficiently high. This failure is typically preceded by a pronounced increase in the total energy of acoustic emission (AE) events, the so-called accelerated seismic release. Yet, other characteristics of approaching the failure point such as the presence or absence of variations in the AE size distribution and, similarly, whether the failure point can be interpreted as a critical point in a statistical physics sense differs across experiments. Here, we show that large-scale stress heterogeneities induced by a notch fundamentally change the characteristics of the failure point in triaxial compression experiments under a constant displacement rate on Westerly granite samples. Specifically, we observe accelerated seismic release without a critical point and no change in power-law exponent ε of the AE size distribution. This is in contrast to intact samples, which exhibit a significant decrease in ε before failure. Our findings imply that the presence or absence of large-scale heterogeneities play a significant role in our ability to predict compressive failure in rock.
Collapse
Affiliation(s)
- Andrew Patton
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW Calgary, Alberta T2N 1N4, Canada
| | - Thomas Goebel
- Center for Earthquake Research and Information, University of Memphis, 3890 Central Avenue, Memphis, Tennessee 38152, USA
| | - Grzegorz Kwiatek
- Section 4.2 Geomechanics and Scientific Drilling, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany
| | - Jörn Davidsen
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
4
|
Xiong Q, Brudzinski MR, Gossett D, Lin Q, Hampton JC. Seismic magnitude clustering is prevalent in field and laboratory catalogs. Nat Commun 2023; 14:2056. [PMID: 37045820 PMCID: PMC10097663 DOI: 10.1038/s41467-023-37782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Clustering of earthquake magnitudes is still actively debated, compared to well-established spatial and temporal clustering. Magnitude clustering is not currently implemented in earthquake forecasting but would be important if larger magnitude events are more likely to be followed by similar sized events. Here we show statistically significant magnitude clustering present in many different field and laboratory catalogs at a wide range of spatial scales (mm to 1000 km). It is universal in field catalogs across fault types and tectonic/induced settings, while laboratory results are unaffected by loading protocol or rock types and show temporal stability. The absence of clustering can be imposed by a global tensile stress, although clustering still occurs when isolating to triggered event pairs or spatial patches where shear stress dominates. Magnitude clustering is most prominent at short time and distance scales and modeling indicates >20% repeating magnitudes in some cases, implying it can help to narrow physical mechanisms for seismogenesis.
Collapse
Affiliation(s)
- Q Xiong
- Geomechanics and Damage Group (GeoD), Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - M R Brudzinski
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - D Gossett
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Q Lin
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, 102249, Beijing, China
- College of Petroleum Engineering, China University of Petroleum, Beijing, China
| | - J C Hampton
- Geomechanics and Damage Group (GeoD), Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Pandey V. Hidden jerk in universal creep and aftershocks. Phys Rev E 2023; 107:L022602. [PMID: 36932618 DOI: 10.1103/physreve.107.l022602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Most materials exhibit creep memory under the action of a constant load. The memory behavior is governed by Andrade's creep law, which also has an inherent connection with the Omori-Utsu law of earthquake aftershocks. Both empirical laws lack a deterministic interpretation. Coincidentally, the Andrade law is similar to the time-varying part of the creep compliance of the fractional dashpot in anomalous viscoelastic modeling. Consequently, fractional derivatives are invoked, but since they lack a physical interpretation, the physical parameters of the two laws extracted from curve fit lack confidence. In this Letter, we establish an analogous linear physical mechanism that underlies both laws and relates its parameters with the material's macroscopic properties. Surprisingly, the explanation does not require the property of viscosity. Instead, it necessitates the existence of a rheological property that relates strain with the first order time derivative of stress, which involves jerk. Further, we justify the constant quality factor model of acoustic attenuation in complex media. The obtained results are validated in light of the established observations.
Collapse
Affiliation(s)
- Vikash Pandey
- School of Interwoven Arts and Sciences, Krea University, Sri City 517646, India
| |
Collapse
|
6
|
Sultan NH, Karimi K, Davidsen J. Sheared granular matter and the empirical relations of seismicity. Phys Rev E 2022; 105:024901. [PMID: 35291058 DOI: 10.1103/physreve.105.024901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The frictional instability associated with earthquake initiation and earthquake dynamics is believed to be mainly controlled by the dynamics of fragmented rocks within the fault gauge. Principal features of the emerging seismicity (e.g., intermittent dynamics and broad time and/or energy scales) have been replicated by simple experimental setups, which involve a slowly driven slider on top of granular matter, for example. Yet these setups are often physically limited and might not allow one to determine the underlying nature of specific features and, hence, the universality and generality of the experimental observations. Here, we address this challenge by a numerical study of a spring-slider experiment based on two-dimensional discrete element method simulations, which allows us to control the properties of the granular matter and of the surface of the slider, for example. Upon quasistatic loading, stick-slip-type behavior emerges which is contrasted by a stable sliding regime at finite driving rates, in agreement with experimental observations. Across large parameter ranges for damping, interparticle friction, particle polydispersity, etc., the earthquake-like dynamics associated with the former regime results in several robust scale-free statistical features also observed in experiments. At first sight, these closely resemble the main empirical relations of tectonic seismicity at geological scales. This includes the Gutenberg-Richter distribution of event sizes, the Omori-Utsu-type decay of aftershock rates, as well as the aftershock productivity relation and broad recurrence time distributions. Yet, we show that the correlations associated with tectonic aftershocks are absent such that the origin of the Omori-Utsu relation, the aftershock productivity relation, and Båth's relation in the simulations is fundamentally different from the case of tectonic seismicity. This, we believe, is mainly due to a lack of macroscale relaxation processes that are closely tied to the generation of real aftershocks. We argue that the same is true for previous laboratory experiments.
Collapse
Affiliation(s)
- Nauman Hafeez Sultan
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Kamran Karimi
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
7
|
Baró J, Pouragha M, Wan R, Davidsen J. Quasistatic kinetic avalanches and self-organized criticality in deviatorically loaded granular media. Phys Rev E 2021; 104:024901. [PMID: 34525539 DOI: 10.1103/physreve.104.024901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 11/07/2022]
Abstract
The behavior of granular media under quasistatic loading has recently been shown to attain a stable evolution state corresponding to a manifold in the space of micromechanical variables. This state is characterized by sudden transitions between metastable jammed states, involving the partial micromechanical rearrangement of the granular medium. Using numerical simulations of two-dimensional granular media under quasistatic biaxial compression, we show that the dynamics in the stable evolution state is characterized by scale-free avalanches well before the macromechanical stationary flow regime traditionally linked to a self-organized critical state. This, together with the nonuniqueness and the nonmonotony of macroscopic deformation curves, suggests that the statistical avalanche properties and the susceptibilities of the system cannot be reduced to a function of the macromechanical state. The associated scaling exponents are nonuniversal and depend on the interactions between particles. For stiffer particles (or samples at low confining pressure) we find distributions of avalanche properties compatible with the predictions of mean-field theory. The scaling exponents decrease below the mean-field values for softer interactions between particles. These lower exponents are consistent with observations for amorphous solids at their critical point. We specifically discuss the relationship between microscopic and macroscopic variables, including the relation between the external stress drop and the internal potential energy released during kinetic avalanches.
Collapse
Affiliation(s)
- Jordi Baró
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4.,Centre for Mathematical Research, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Mehdi Pouragha
- Civil Engineering Department, University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4.,Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Richard Wan
- Civil Engineering Department, University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4
| | - Jörn Davidsen
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW Calgary, Alberta, Canada T2N 1N4.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
8
|
Casals B, Dahmen KA, Gou B, Rooke S, Salje EKH. The duration-energy-size enigma for acoustic emission. Sci Rep 2021; 11:5590. [PMID: 33692380 PMCID: PMC7947008 DOI: 10.1038/s41598-021-84688-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/17/2021] [Indexed: 12/02/2022] Open
Abstract
Acoustic emission (AE) measurements of avalanches in different systems, such as domain movements in ferroics or the collapse of voids in porous materials, cannot be compared with model predictions without a detailed analysis of the AE process. In particular, most AE experiments scale the avalanche energy E, maximum amplitude Amax and duration D as E ~ Amaxx and Amax ~ Dχ with x = 2 and a poorly defined power law distribution for the duration. In contrast, simple mean field theory (MFT) predicts that x = 3 and χ = 2. The disagreement is due to details of the AE measurements: the initial acoustic strain signal of an avalanche is modified by the propagation of the acoustic wave, which is then measured by the detector. We demonstrate, by simple model simulations, that typical avalanches follow the observed AE results with x = 2 and ‘half-moon’ shapes for the cross-correlation. Furthermore, the size S of an avalanche does not always scale as the square of the maximum AE avalanche amplitude Amax as predicted by MFT but scales linearly S ~ Amax. We propose that the AE rise time reflects the atomistic avalanche time profile better than the duration of the AE signal.
Collapse
Affiliation(s)
- Blai Casals
- Department of Earth Sciences, Cambridge University, Cambridge, UK.
| | - Karin A Dahmen
- Department of Physics, University of Illinois, Urbana, IL, 61801, USA
| | - Boyuan Gou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'An Jiao Tong University, Xian, 710049, Shaanxi, People's Republic of China
| | - Spencer Rooke
- Department of Physics, University of Illinois, Urbana, IL, 61801, USA
| | - Ekhard K H Salje
- Department of Earth Sciences, Cambridge University, Cambridge, UK
| |
Collapse
|
9
|
Lin H, lu C, Wang HY, Dai LH. Non-trivial avalanches triggered by shear banding in compression of metallic glass foams. Proc Math Phys Eng Sci 2020. [DOI: 10.1098/rspa.2020.0186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ductile metallic glass foams (DMGFs) are a new type of structural material with a perfect combination of high strength and toughness. Owing to their disordered atomic-scale microstructures and randomly distributed macroscopic voids, the compressive deformation of DMGFs proceeds through multiple nanoscale shear bands accompanied by local fracture of cellular structures, which induces avalanche-like intermittences in stress–strain curves. In this paper, we present a statistical analysis, including distributions of avalanche size, energy dissipation, waiting times and aftershock sequence, on such a complex dynamic process, which is dominated by shear banding. After eliminating the influence of structural disorder, we demonstrate that, in contrast to the mean-field results of their brittle counterparts, scaling laws in DMGFs are characterized by different exponents. It is shown that the occurrence of non-trivial scaling behaviours is attributed to the localized plastic yielding, which effectively prevents the system from building up a long-range correlation. This accounts for the high structural stability and energy absorption performance of DMGFs. Furthermore, our results suggest that such shear banding dynamics introduce an additional characteristic time scale, which leads to a universal gamma distribution of waiting times.
Collapse
Affiliation(s)
- H. Lin
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, People’s Republic of China
| | - C. lu
- School of Civil and Mechanical Engineering, Curtin University, Western Australia 6845, Australia
| | - H. Y. Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, People’s Republic of China
| | - L. H. Dai
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, People’s Republic of China
| |
Collapse
|
10
|
Kwiatek G, Saarno T, Ader T, Bluemle F, Bohnhoff M, Chendorain M, Dresen G, Heikkinen P, Kukkonen I, Leary P, Leonhardt M, Malin P, Martínez-Garzón P, Passmore K, Passmore P, Valenzuela S, Wollin C. Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. SCIENCE ADVANCES 2019; 5:eaav7224. [PMID: 31049397 PMCID: PMC6494490 DOI: 10.1126/sciadv.aav7224] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
We show that near-real-time seismic monitoring of fluid injection allowed control of induced earthquakes during the stimulation of a 6.1-km-deep geothermal well near Helsinki, Finland. A total of 18,160 m3 of fresh water was pumped into crystalline rocks over 49 days in June to July 2018. Seismic monitoring was performed with a 24-station borehole seismometer network. Using near-real-time information on induced-earthquake rates, locations, magnitudes, and evolution of seismic and hydraulic energy, pumping was either stopped or varied-in the latter case, between well-head pressures of 60 and 90 MPa and flow rates of 400 and 800 liters/min. This procedure avoided the nucleation of a project-stopping magnitude M W 2.0 induced earthquake, a limit set by local authorities. Our results suggest a possible physics-based approach to controlling stimulation-induced seismicity in geothermal projects.
Collapse
Affiliation(s)
- Grzegorz Kwiatek
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.2: Geomechanics and Scientific Drilling, Potsdam, Germany
- Free University Berlin, Berlin, Germany
| | | | | | - Felix Bluemle
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.2: Geomechanics and Scientific Drilling, Potsdam, Germany
| | - Marco Bohnhoff
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.2: Geomechanics and Scientific Drilling, Potsdam, Germany
- Free University Berlin, Berlin, Germany
| | | | - Georg Dresen
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.2: Geomechanics and Scientific Drilling, Potsdam, Germany
- University of Potsdam, Potsdam, Germany
| | - Pekka Heikkinen
- St1 Deep Heat Oy, Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Ilmo Kukkonen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Peter Leary
- ASIR Advanced Seismic Instrumentation and Research, Dallas, TX, USA
| | - Maria Leonhardt
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.2: Geomechanics and Scientific Drilling, Potsdam, Germany
| | - Peter Malin
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.2: Geomechanics and Scientific Drilling, Potsdam, Germany
- ASIR Advanced Seismic Instrumentation and Research, Dallas, TX, USA
| | - Patricia Martínez-Garzón
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.2: Geomechanics and Scientific Drilling, Potsdam, Germany
| | - Kevin Passmore
- ASIR Advanced Seismic Instrumentation and Research, Dallas, TX, USA
| | - Paul Passmore
- ASIR Advanced Seismic Instrumentation and Research, Dallas, TX, USA
| | | | - Christopher Wollin
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.2: Geomechanics and Scientific Drilling, Potsdam, Germany
| |
Collapse
|
11
|
Vu CC, Amitrano D, Plé O, Weiss J. Compressive Failure as a Critical Transition: Experimental Evidence and Mapping onto the Universality Class of Depinning. PHYSICAL REVIEW LETTERS 2019; 122:015502. [PMID: 31012687 DOI: 10.1103/physrevlett.122.015502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Acoustic emission (AE) measurements performed during the compressive loading of concrete samples with three different microstructures (aggregate sizes and porosity) and four sample sizes revealed that failure is preceded by an acceleration of the rate of fracturing events, power law distributions of AE energies and durations near failure, and a divergence of the fracturing correlation length and time towards failure. This argues for an interpretation of compressive failure of disordered materials as a critical transition between an intact and a failed state. The associated critical exponents were found to be independent of sample size and microstructural disorder and close to mean-field depinning values. Although compressive failure differs from classical depinning in several respects, including the nature of the elastic redistribution kernel, an analogy between the two processes allows deriving (finite-) sizing effects on strength that match our extensive data set. This critical interpretation of failure may have also important consequences in terms of natural hazards forecasting, such as volcanic eruptions, landslides, or cliff collapses.
Collapse
Affiliation(s)
- Chi-Cong Vu
- University of Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
| | - David Amitrano
- University of Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
| | - Olivier Plé
- University of Savoie Mont-Blanc, CNRS, LOCIE, 73736 Le Bourget du Lac Cedex, France
| | - Jérôme Weiss
- University of Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
| |
Collapse
|
12
|
Baró J, Dahmen KA, Davidsen J, Planes A, Castillo PO, Nataf GF, Salje EKH, Vives E. Experimental Evidence of Accelerated Seismic Release without Critical Failure in Acoustic Emissions of Compressed Nanoporous Materials. PHYSICAL REVIEW LETTERS 2018; 120:245501. [PMID: 29956947 DOI: 10.1103/physrevlett.120.245501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Indexed: 06/08/2023]
Abstract
The total energy of acoustic emission (AE) events in externally stressed materials diverges when approaching macroscopic failure. Numerical and conceptual models explain this accelerated seismic release (ASR) as the approach to a critical point that coincides with ultimate failure. Here, we report ASR during soft uniaxial compression of three silica-based (SiO_{2}) nanoporous materials. Instead of a singular critical point, the distribution of AE energies is stationary, and variations in the activity rate are sufficient to explain the presence of multiple periods of ASR leading to distinct brittle failure events. We propose that critical failure is suppressed in the AE statistics by mechanisms of transient hardening. Some of the critical exponents estimated from the experiments are compatible with mean field models, while others are still open to interpretation in terms of the solution of frictional and fracture avalanche models.
Collapse
Affiliation(s)
- Jordi Baró
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW Calgary, Alberta T2N 1N4, Canada
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès, 1. 08028 Barcelona, Catalonia, Spain
| | - Karin A Dahmen
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
| | - Jörn Davidsen
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW Calgary, Alberta T2N 1N4, Canada
| | - Antoni Planes
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès, 1. 08028 Barcelona, Catalonia, Spain
| | - Pedro O Castillo
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès, 1. 08028 Barcelona, Catalonia, Spain
- CONACYT, Instituto Tecnológico de Oaxaca, Av. Ing. Víctor Bravo Ahuja 125, Oaxaca de Juárez 68030, México
| | - Guillaume F Nataf
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès, 1. 08028 Barcelona, Catalonia, Spain
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Ekhard K H Salje
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Eduard Vives
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès, 1. 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Baró J, Davidsen J. Universal avalanche statistics and triggering close to failure in a mean-field model of rheological fracture. Phys Rev E 2018; 97:033002. [PMID: 29776086 DOI: 10.1103/physreve.97.033002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 06/08/2023]
Abstract
The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible for deformation. Avalanche models involving critical failure have determined common universality classes for stick-slip processes and fracture. However, not all empirical failure processes exhibit the trademarks of criticality. The rheological properties of materials introduce dissipation, usually reproduced in conceptual models as a hardening of the coarse grained elements of the system. Here, we investigate the effects of transient hardening on (i) the activity rate and (ii) the statistical properties of avalanches. We find the explicit representation of transient hardening in the presence of generalized viscoelasticity and solve the corresponding mean-field model of fracture. In the quasistatic limit, the accelerated energy release is invariant with respect to rheology and the avalanche propagation can be reinterpreted in terms of a stochastic counting process. A single universality class can be defined from such analogy, and all statistical properties depend only on the distance to criticality. We also prove that interevent correlations emerge due to the hardening-even in the quasistatic limit-that can be interpreted as "aftershocks" and "foreshocks."
Collapse
Affiliation(s)
- Jordi Baró
- Department of Physics and Astronomy University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada T2N 1N4
| | - Jörn Davidsen
- Department of Physics and Astronomy University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|