1
|
Bounds CC, Duff JP, Tritt A, Taylor HAM, Coe GX, White SJ, Turner LD. Quantum Spectral Analysis by Continuous Measurement of Landau-Zener Transitions. PHYSICAL REVIEW LETTERS 2024; 132:093401. [PMID: 38489644 DOI: 10.1103/physrevlett.132.093401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/17/2024] [Indexed: 03/17/2024]
Abstract
We demonstrate the simultaneous estimation of signal frequency and amplitude by a single quantum sensor in a single experimental shot. Sweeping the qubit splitting linearly across a span of frequencies induces a nonadiabatic Landau-Zener transition as the qubit crosses resonance. The signal frequency determines the time of the transition, and the amplitude its extent. Continuous weak measurement of this unitary evolution informs a parameter estimator retrieving precision measurements of frequency and amplitude. Implemented on radio-frequency-dressed ultracold atoms read out by a Faraday spin-light interface, we sense a magnetic signal with estimated sensitivities to amplitude of 11 pT/sqrt[Hz], frequency 0.026 Hz/Hz^{3/2}, and phase 0.084 rad/sqrt[Hz], in a single 300 ms sweep from 7 to 13 kHz. The protocol realizes a swept-sine quantum spectrum analyzer, potentially sensing hundreds or thousands of channels with a single quantum sensor.
Collapse
Affiliation(s)
- Christopher C Bounds
- School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
| | - Josh P Duff
- School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
| | - Alex Tritt
- School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
| | - Hamish A M Taylor
- School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
| | - George X Coe
- School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
| | - Sam J White
- School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
| | - L D Turner
- School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Yang J, Pang S, Chen Z, Jordan AN, Del Campo A. Variational Principle for Optimal Quantum Controls in Quantum Metrology. PHYSICAL REVIEW LETTERS 2022; 128:160505. [PMID: 35522510 DOI: 10.1103/physrevlett.128.160505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
We develop a variational principle to determine the quantum controls and initial state that optimizes the quantum Fisher information, the quantity characterizing the precision in quantum metrology. When the set of available controls is limited, the exact optimal initial state and the optimal controls are, in general, dependent on the probe time, a feature missing in the unrestricted case. Yet, for time-independent Hamiltonians with restricted controls, the problem can be approximately reduced to the unconstrained case via Floquet engineering. In particular, we find for magnetometry with a time-independent spin chain containing three-body interactions, even when the controls are restricted to one- and two-body interaction, that the Heisenberg scaling can still be approximately achieved. Our results open the door to investigate quantum metrology under a limited set of available controls, of relevance to many-body quantum metrology in realistic scenarios.
Collapse
Affiliation(s)
- Jing Yang
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Shengshi Pang
- School of Physics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Zekai Chen
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, California 92866, USA
| | - Adolfo Del Campo
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
- Donostia International Physics Center, E-20018 San Sebastián, Spain
| |
Collapse
|
3
|
Bao F, Choi H, Aggarwal V, Jacob Z. Quantum-accelerated imaging of N stars. OPTICS LETTERS 2021; 46:3045-3048. [PMID: 34197375 DOI: 10.1364/ol.430404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Imaging point sources with low angular separation near or below the Rayleigh criterion are important in astronomy, e.g., in the search for habitable exoplanets near stars. However, the measurement time required to resolve stars in the sub-Rayleigh region via traditional direct imaging is usually prohibitive. Here we propose quantum-accelerated imaging (QAI) to significantly reduce the measurement time using an information-theoretic approach. QAI achieves quantum acceleration by adaptively learning optimal measurements from data to maximize Fisher information per detected photon. Our approach can be implemented experimentally by linear-projection instruments followed by single-photon detectors. We estimate the position, brightness, and the number of unknown stars 10∼100 times faster than direct imaging with the same aperture. QAI is scalable to a large number of incoherent point sources and can find widespread applicability beyond astronomy to high-speed imaging, fluorescence microscopy, and efficient optical read-out of qubits.
Collapse
|
4
|
Montenegro V, Mishra U, Bayat A. Global Sensing and Its Impact for Quantum Many-Body Probes with Criticality. PHYSICAL REVIEW LETTERS 2021; 126:200501. [PMID: 34110199 DOI: 10.1103/physrevlett.126.200501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Quantum sensing is one of the key areas that exemplify the superiority of quantum technologies. Nonetheless, most quantum sensing protocols operate efficiently only when the unknown parameters vary within a very narrow region, i.e., local sensing. Here, we provide a systematic formulation for quantifying the precision of a probe for multiparameter global sensing when there is no prior information about the parameters. In many-body probes, in which extra tunable parameters exist, our protocol can tune the performance for harnessing the quantum criticality over arbitrarily large sensing intervals. For the single-parameter sensing, our protocol optimizes a control field such that an Ising probe is tuned to always operate around its criticality. This significantly enhances the performance of the probe even when the interval of interest is so large that the precision is bounded by the standard limit. For the multiparameter case, our protocol optimizes the control fields such that the probe operates at the most efficient point along its critical line. Finally, it is shown that even a simple magnetization measurement significantly benefits from our global sensing protocol.
Collapse
Affiliation(s)
- Victor Montenegro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Utkarsh Mishra
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Abolfazl Bayat
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| |
Collapse
|
5
|
Hou Z, Jin Y, Chen H, Tang JF, Huang CJ, Yuan H, Xiang GY, Li CF, Guo GC. "Super-Heisenberg" and Heisenberg Scalings Achieved Simultaneously in the Estimation of a Rotating Field. PHYSICAL REVIEW LETTERS 2021; 126:070503. [PMID: 33666488 DOI: 10.1103/physrevlett.126.070503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Heisenberg scaling, which scales as N^{-1} in terms of the number of particles or T^{-1} in terms of the evolution time, serves as a fundamental limit in quantum metrology. Better scalings, dubbed as "super-Heisenberg scaling," however, can also arise when the generator of the parameter involves many-body interactions or when it is time dependent. All these different scalings can actually be seen as manifestations of the Heisenberg uncertainty relations. While there is only one best scaling in the single-parameter quantum metrology, different scalings can coexist for the estimation of multiple parameters, which can be characterized by multiple Heisenberg uncertainty relations. We demonstrate the coexistence of two different scalings via the simultaneous estimation of the magnitude and frequency of a field where the best precisions, characterized by two Heisenberg uncertainty relations, scale as T^{-1} and T^{-2}, respectively (in terms of the standard deviation). We show that the simultaneous saturation of two Heisenberg uncertainty relations can be achieved by the optimal protocol, which prepares the optimal probe state, implements the optimal control, and performs the optimal measurement. The optimal protocol is experimentally implemented on an optical platform that demonstrates the saturation of the two Heisenberg uncertainty relations simultaneously, with up to five controls. As the first demonstration of simultaneously achieving two different Heisenberg scalings, our study deepens the understanding on the connection between the precision limit and the uncertainty relations, which has wide implications in practical applications of multiparameter quantum estimation.
Collapse
Affiliation(s)
- Zhibo Hou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yan Jin
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hongzhen Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jun-Feng Tang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chang-Jiang Huang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Haidong Yuan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Guo-Yong Xiang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
6
|
Shortcut-to-Adiabaticity-Like Techniques for Parameter Estimation in Quantum Metrology. ENTROPY 2020; 22:e22111251. [PMID: 33287019 PMCID: PMC7712389 DOI: 10.3390/e22111251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
Quantum metrology makes use of quantum mechanics to improve precision measurements and measurement sensitivities. It is usually formulated for time-independent Hamiltonians, but time-dependent Hamiltonians may offer advantages, such as a T4 time dependence of the Fisher information which cannot be reached with a time-independent Hamiltonian. In Optimal adaptive control for quantum metrology with time-dependent Hamiltonians (Nature Communications 8, 2017), Shengshi Pang and Andrew N. Jordan put forward a Shortcut-to-adiabaticity (STA)-like method, specifically an approach formally similar to the “counterdiabatic approach”, adding a control term to the original Hamiltonian to reach the upper bound of the Fisher information. We revisit this work from the point of view of STA to set the relations and differences between STA-like methods in metrology and ordinary STA. This analysis paves the way for the application of other STA-like techniques in parameter estimation. In particular we explore the use of physical unitary transformations to propose alternative time-dependent Hamiltonians which may be easier to implement in the laboratory.
Collapse
|
7
|
|
8
|
Abstract
The field of quantum sensing explores the use of quantum phenomena to measure a broad range of physical quantities, of both static and time-dependent types. While for static signals the main figure of merit is sensitivity, for time dependent signals it is spectral resolution, i.e. the ability to resolve two different frequencies. Here we study this problem, and develop new superresolution methods that rely on quantum features. We first formulate a general criterion for superresolution in quantum problems. Inspired by this, we show that quantum detectors can resolve two frequencies from incoherent segments of the signal, irrespective of their separation, in contrast to what is known about classical detection schemes. The main idea behind these methods is to overcome the vanishing distinguishability in resolution problems by nullifying the projection noise. Standard resolution limits reflect the fact that two objects, frequencies etc. cannot be told apart when they get too close. Here, the authors show theoretically that, if one is able to reduce projection noise by suitable control of the probe, these limits can be overcome.
Collapse
|