1
|
Malhotra I, Löwen H. Double Mpemba effect in the cooling of trapped colloids. J Chem Phys 2024; 161:164903. [PMID: 39436099 DOI: 10.1063/5.0225749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
The Mpemba effect describes the phenomenon that a system at hot initial temperature cools faster than at an initial warm temperature in the same environment. Such an anomalous cooling has recently been predicted and realized for trapped colloids. Here, we investigate the freezing behavior of a passive colloidal particle by employing numerical Brownian dynamics simulations and theoretical calculations with a model that can be directly tested in experiments. During the cooling process, the colloidal particle exhibits multiple non-monotonic regimes in cooling rates, with the cooling time decreasing twice as a function of the initial temperature-an unexpected phenomenon we refer to as the Double Mpemba effect. In addition, we demonstrate that both the Mpemba and Double Mpemba effects can be predicted by various machine-learning methods, which expedite the analysis of complex, computationally intensive systems.
Collapse
Affiliation(s)
- Isha Malhotra
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Santos A. Mpemba meets Newton: Exploring the Mpemba and Kovacs effects in the time-delayed cooling law. Phys Rev E 2024; 109:044149. [PMID: 38755857 DOI: 10.1103/physreve.109.044149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Despite extensive research, the fundamental physical mechanisms underlying the Mpemba effect, a phenomenon where a substance cools faster after initially being heated, remain elusive. Although historically linked with water, the Mpemba effect manifests across diverse systems, sparking heightened interest in Mpemba-like phenomena. Concurrently, the Kovacs effect, a memory phenomenon observed in materials such as polymers, involves rapid quenching and subsequent temperature changes, resulting in nonmonotonic relaxation behavior. This paper probes the intricacies of the Mpemba and Kovacs effects within the framework of the time-delayed Newton's law of cooling, recognized as a simplistic yet effective phenomenological model accommodating memory phenomena. This law allows for a nuanced comprehension of temperature variations, introducing a delay time (τ) and incorporating specific protocols for the thermal bath temperature, contingent on a defined waiting time (t_{w}). Remarkably, the relevant parameter space is two-dimensional (τ and t_{w}), with bath temperatures exerting no influence on the presence or absence of the Mpemba effect or on the relative strength of the Kovacs effect. The findings enhance our understanding of these memory phenomena, providing valuable insights applicable to researchers across diverse fields, ranging from physics to materials science.
Collapse
Affiliation(s)
- Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
3
|
Tong Y, Song L, Gao Y, Fan L, Li F, Yang Y, Mo G, Liu Y, Shui X, Zhang Y, Gao M, Huo J, Qiao J, Pineda E, Wang JQ. Strain-driven Kovacs-like memory effect in glasses. Nat Commun 2023; 14:8407. [PMID: 38110399 PMCID: PMC10728148 DOI: 10.1038/s41467-023-44187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Studying complex relaxation behaviors is of critical importance for understanding the nature of glasses. Here we report a Kovacs-like memory effect in glasses, manifested by non-monotonic stress relaxation during two-step high-to-low strains stimulations. During the stress relaxation process, if the strain jumps from a higher state to a lower state, the stress does not continue to decrease, but increases first and then decreases. The memory effect becomes stronger when the atomic motions become highly collective with a large activation energy, e.g. the strain in the first stage is larger, the temperature is higher, and the stimulation is longer. The physical origin of the stress memory effect is studied based on the relaxation kinetics and the in-situ synchrotron X-ray experiments. The stress memory effect is probably a universal phenomenon in different types of glasses.
Collapse
Affiliation(s)
- Yu Tong
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Lijian Song
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Yurong Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Longlong Fan
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Fucheng Li
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yiming Yang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yanhui Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Shui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Meng Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Juntao Huo
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jichao Qiao
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, China
| | - Eloi Pineda
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona, Spain.
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Chen Y, Zhang Q, Ramakrishnan S, Leheny RL. Memory in aging colloidal gels with time-varying attraction. J Chem Phys 2023; 158:024906. [PMID: 36641382 DOI: 10.1063/5.0126432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We report a combined rheology, x-ray photon correlation spectroscopy, and modeling study of gel formation and aging in suspensions of nanocolloidal spheres with volume fractions of 0.20 and 0.43 and with a short-range attraction whose strength is tuned by changing temperature. Following a quench from high temperature, where the colloids are essentially hard spheres, to a temperature below the gel point, the suspensions form gels that undergo aging characterized by a steadily increasing elastic shear modulus and slowing, increasingly constrained microscopic dynamics. The aging proceeds at a faster rate for stronger attraction strength. When the attraction strength is suddenly lowered during aging, the gel properties evolve non-monotonically in a manner resembling the Kovacs effect in glasses, in which the modulus decreases and the microscopic dynamics become less constrained for a period before more conventional aging resumes. Eventually, the properties of the gel following the decrease in attraction strength converge to those of a gel that has undergone aging at the lower attraction strength throughout. The time scale of this convergence increases as a power law with the age at which the attraction strength is decreased and decreases exponentially with the magnitude of the change in attraction. A model for gel aging in which particles attach and detach from the gel at rates that depend on their contact number reproduces these trends and reveals that the non-monotonic behavior results from the dispersion in the rates that the populations of particles with different contact number adjust to the new attraction strength.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Qingteng Zhang
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Militaru A, Lasanta A, Frimmer M, Bonilla LL, Novotny L, Rica RA. Kovacs Memory Effect with an Optically Levitated Nanoparticle. PHYSICAL REVIEW LETTERS 2021; 127:130603. [PMID: 34623831 DOI: 10.1103/physrevlett.127.130603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The understanding of the dynamics of nonequilibrium cooling and heating processes at the nanoscale is still an open problem. These processes can follow surprising relaxation paths due to, e.g., memory effects, which significantly alter the expected equilibration routes. The Kovacs effect can take place when a thermalization process is suddenly interrupted by a change of the bath temperature, leading to a nonmonotonic evolution of the energy of the system. Here, we demonstrate that the Kovacs effect can be observed in the thermalization of the center of mass motion of a levitated nanoparticle. The temperature is controlled during the experiment through an external source of white Gaussian noise that mimics an effective thermal bath at a temperature that can be changed faster than any relaxation time of the system. We describe our experiments in terms of the dynamics of a Brownian particle in a harmonic trap without any fitting parameter, suggesting that the Kovacs effect can appear in a large variety of systems.
Collapse
Affiliation(s)
- Andrei Militaru
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Antonio Lasanta
- Departamento de Álgebra, Facultad de Educación, Economía y Tecnología de Ceuta, Universidad de Granada, Cortadura del Valle, s/n, 51001 Ceuta, Spain
- Grupo de Teorías de Campos y Física Estadística, Instituto Gregorio Millán, Universidad Carlos III de Madrid, Unidad Asociada al Instituto de Estructura de la Materia, CSIC, Spain
- Grupo de Matemática Aplicada a la Física de la Materia Condensada, Instituto Gregorio Millán, Universidad Carlos III de Madrid, Unidad Asociada al Instituto de Ciencias de Materiales de Madrid, CSIC, Spain
- Nanoparticles Trapping Laboratory, Universidad de Granada, 18071 Granada, Spain
| | - Martin Frimmer
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Luis L Bonilla
- Grupo de Matemática Aplicada a la Física de la Materia Condensada, Instituto Gregorio Millán, Universidad Carlos III de Madrid, Unidad Asociada al Instituto de Ciencias de Materiales de Madrid, CSIC, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Instituto Gregorio Millán, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Lukas Novotny
- Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Raúl A Rica
- Nanoparticles Trapping Laboratory, Universidad de Granada, 18071 Granada, Spain
- Universidad de Granada, Department of Applied Physics and Research Unit "Modeling Nature" (MNat), 18071 Granada, Spain
| |
Collapse
|
6
|
Sánchez-Rey B, Prados A. Linear response in the uniformly heated granular gas. Phys Rev E 2021; 104:024903. [PMID: 34525635 DOI: 10.1103/physreve.104.024903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/29/2021] [Indexed: 11/07/2022]
Abstract
We analyze the linear response properties of the uniformly heated granular gas. The intensity of the stochastic driving fixes the value of the granular temperature in the nonequilibrium steady state reached by the system. Here, we investigate two specific situations. First, we look into the "direct" relaxation of the system after a single (small) jump of the driving intensity. This study is carried out by two different methods. Not only do we linearize the evolution equations around the steady state, but we also derive generalized out-of-equilibrium fluctuation-dissipation relations for the relevant response functions. Second, we investigate the behavior of the system in a more complex experiment, specifically a Kovacs-like protocol with two jumps in the driving. The emergence of an anomalous Kovacs response is explained in terms of the properties of the direct relaxation function: it is the second mode changing sign at the critical value of the inelasticity that demarcates anomalous from normal behavior. The analytical results are compared with numerical simulations of the kinetic equation, and a good agreement is found.
Collapse
Affiliation(s)
- Bernardo Sánchez-Rey
- Departamento de Física Aplicada I, E.P.S., Universidad de Sevilla, Virgen de África 7, E-41011 Sevilla, Spain
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
7
|
Peyrard M, Garden JL. Memory effects in glasses: Insights into the thermodynamics of out-of-equilibrium systems revealed by a simple model of the Kovacs effect. Phys Rev E 2020; 102:052122. [PMID: 33327132 DOI: 10.1103/physreve.102.052122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/03/2020] [Indexed: 11/07/2022]
Abstract
Glasses are interesting materials because they allow us to explore the puzzling properties of out-of-equilibrium systems. One of them is the Kovacs effect in which a glass, brought to an out-of-equilibrium state in which all its thermodynamic variables are identical to those of an equilibrium state, nevertheless evolves, showing a hump in some global variable before the thermodynamic variables come back to their starting point. We show that a simple three-state system is sufficient to study this phenomenon using numerical integrations and exact analytical calculations. It also brings some light on the concept of fictive temperature, often used to extend standard thermodynamics to the out-of-equilibrium properties of glasses. We confirm that the concept of a unique fictive temperature is not valid, an show it can be extended to make a connection with the various relaxation processes in the system. The model also brings further insights on the thermodynamics of out-of-equilibrium systems. Moreover, we show that the three-state model is able to describe various effects observed in glasses such as the asymmetric relaxation to equilibrium discussed by Kovacs, or the reverse crossover measured on B_{2}O_{3}.
Collapse
Affiliation(s)
- Michel Peyrard
- Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Physique CNRS UMR 5672, 46 allée d'Italie, F-69364 Lyon Cedex 7, France
| | - Jean-Luc Garden
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NÉEL, 38000 Grenoble, France
| |
Collapse
|
8
|
Nikoubashman A, Ihle T. Transport coefficients of self-propelled particles: Reverse perturbations and transverse current correlations. Phys Rev E 2019; 100:042603. [PMID: 31770923 DOI: 10.1103/physreve.100.042603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 11/07/2022]
Abstract
The reverse perturbation method [Phys. Rev. E 59, 4894 (1999)1063-651X10.1103/PhysRevE.59.4894] for shearing simple liquids and measuring their viscosity is extended to the Vicsek model (VM) of active particles [Phys. Rev. Lett. 75, 1226 (1995)PRLTAO0031-900710.1103/PhysRevLett.75.1226] and its metric-free version. The sheared systems exhibit a phenomenon that is similar to the skin effect of an alternating electric current: Momentum that is fed into the boundaries of a layer decays mostly exponentially toward the center of the layer. It is shown how two transport coefficients, i.e., the shear viscosity ν and the momentum amplification coefficient λ, can be obtained by fitting this decay with an analytical solution of the hydrodynamic equations for the VM. The viscosity of the VM consists of two parts, a kinetic and a collisional contribution. While analytical predictions already exist for the former, a novel expression for the collisional part is derived by an Enskog-like kinetic theory. To verify the predictions for the transport coefficients, Green-Kubo relations were evaluated and transverse current correlations were measured in independent simulations. Not too far to the transition to collective motion, we find excellent agreement between the different measurements of the transport coefficients. However, the measured values of ν and 1-λ are always slightly higher than the mean-field predictions, even at large mean free paths and at state points quite far from the threshold to collective motion, that is, far in the disordered phase. These findings seem to indicate that the mean-field assumption of molecular chaos is much less reliable in systems with velocity-alignment rules such as the VM, compared to models obeying detailed balance such as multiparticle collision dynamics.
Collapse
Affiliation(s)
- Arash Nikoubashman
- Institute of Physics, Johannes-Gutenberg-University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Thomas Ihle
- Institute for Physics, University of Greifswald, Felix-Hausdorff-Strasse 6, 17489 Greifswald, Germany
| |
Collapse
|
9
|
Gijón A, Lasanta A, Hernández ER. Paths towards equilibrium in molecular systems: The case of water. Phys Rev E 2019; 100:032103. [PMID: 31639902 DOI: 10.1103/physreve.100.032103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 06/10/2023]
Abstract
We consider the problem of how a condensed molecular system approaches equilibrium, focusing on the particular case of water. We show, by means of extensive molecular dynamics simulations, that the existence of different types of degrees of freedom affects the dynamics of equilibration, and this influence is made most obvious in the system's temperature. When equipartition of energy does not hold in the initial, nonequilibrium state, the instantaneous temperature can be up to a few degrees lower than that observed under equipartition conditions, resulting in a Mpemba-like effect. Though our study considers water in particular, our findings apply more generally to condensed molecular systems.
Collapse
Affiliation(s)
- A Gijón
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - A Lasanta
- G. Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Leganés, Spain
| | - E R Hernández
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Abstract
The Mpemba effect occurs when a hot system cools faster than an initially colder one, when both are refrigerated in the same thermal reservoir. Using the custom-built supercomputer Janus II, we study the Mpemba effect in spin glasses and show that it is a nonequilibrium process, governed by the coherence length ξ of the system. The effect occurs when the bath temperature lies in the glassy phase, but it is not necessary for the thermal protocol to cross the critical temperature. In fact, the Mpemba effect follows from a strong relationship between the internal energy and ξ that turns out to be a sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents itself as an intriguing avenue for the experimental study of the coherence length in supercooled liquids and other glass formers.
Collapse
|
11
|
Kovacs-Like Memory Effect in Athermal Systems: Linear Response Analysis. ENTROPY 2017. [DOI: 10.3390/e19100539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|