1
|
Li Y, Xiang Y, Yu XD, Nguyen HC, Gühne O, He Q. Randomness Certification from Multipartite Quantum Steering for Arbitrary Dimensional Systems. PHYSICAL REVIEW LETTERS 2024; 132:080201. [PMID: 38457732 DOI: 10.1103/physrevlett.132.080201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 03/10/2024]
Abstract
Entanglement in bipartite systems has been applied to generate secure random numbers, which are playing an important role in cryptography or scientific numerical simulations. Here, we propose to use multipartite entanglement distributed between trusted and untrusted parties for generating randomness of arbitrary dimensional systems. We show that the distributed structure of several parties leads to additional protection against possible attacks by an eavesdropper, resulting in more secure randomness generated than in the corresponding bipartite scenario. Especially, randomness can be certified in the group of untrusted parties, even when there is no randomness in either of them individually. We prove that the necessary and sufficient resource for quantum randomness in this scenario is multipartite quantum steering when each untrusted party has a choice between only two measurements. However, the sufficiency no longer holds with more measurement settings. Finally, we apply our analysis to some experimentally realized states and show that more randomness can be extracted compared with the existing analysis.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Yu Xiang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiao-Dong Yu
- Department of Physics, Shandong University, Jinan 250100, China
| | - H Chau Nguyen
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
| | - Otfried Gühne
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
| | - Qiongyi He
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
2
|
Courme B, Vernière C, Svihra P, Gigan S, Nomerotski A, Defienne H. Quantifying high-dimensional spatial entanglement with a single-photon-sensitive time-stamping camera. OPTICS LETTERS 2023; 48:3439-3442. [PMID: 37390150 DOI: 10.1364/ol.487182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 07/02/2023]
Abstract
High-dimensional entanglement is a promising resource for quantum technologies. Being able to certify it for any quantum state is essential. However, to date, experimental entanglement certification methods are imperfect and leave some loopholes open. Using a single-photon-sensitive time-stamping camera, we quantify high-dimensional spatial entanglement by collecting all output modes and without background subtraction, two critical steps on the route toward assumptions-free entanglement certification. We show position-momentum Einstein-Podolsky-Rosen (EPR) correlations and quantify the entanglement of formation of our source to be larger than 2.8 along both transverse spatial axes, indicating a dimension higher than 14. Our work overcomes important challenges in photonic entanglement quantification and paves the way toward the development of practical quantum information processing protocols based on high-dimensional entanglement.
Collapse
|
3
|
Maia MR, Jonathan D, de Oliveira TR, Khoury AZ, Tasca DS. Optical computing of quantum revivals. OPTICS EXPRESS 2022; 30:27180-27195. [PMID: 36236895 DOI: 10.1364/oe.459483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/23/2022] [Indexed: 06/16/2023]
Abstract
Interference is the mechanism through which waves can be structured into the most fascinating patterns. While for sensing, imaging, trapping, or in fundamental investigations, structured waves play nowadays an important role and are becoming the subject of many interesting studies. Using a coherent optical field as a probe, we show how to structure light into distributions presenting collapse and revival structures in its wavefront. These distributions are obtained from the Fourier spectrum of an arrangement of aperiodic diffracting structures. Interestingly, the resulting interference may present quasiperiodic structures of diffraction peaks on a number of distance scales, even though the diffracting structure is not periodic. We establish an analogy with revival phenomena in the evolution of quantum mechanical systems and illustrate this computation numerically and experimentally, obtaining excellent agreement with the proposed theory.
Collapse
|
4
|
Tavakoli A, Farkas M, Rosset D, Bancal JD, Kaniewski J. Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments. SCIENCE ADVANCES 2021; 7:eabc3847. [PMID: 33568472 PMCID: PMC7875535 DOI: 10.1126/sciadv.abc3847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Mutually unbiased bases (MUBs) and symmetric informationally complete projectors (SICs) are crucial to many conceptual and practical aspects of quantum theory. Here, we develop their role in quantum nonlocality by (i) introducing families of Bell inequalities that are maximally violated by d-dimensional MUBs and SICs, respectively, (ii) proving device-independent certification of natural operational notions of MUBs and SICs, and (iii) using MUBs and SICs to develop optimal-rate and nearly optimal-rate protocols for device-independent quantum key distribution and device-independent quantum random number generation, respectively. Moreover, we also present the first example of an extremal point of the quantum set of correlations that admits physically inequivalent quantum realizations. Our results elaborately demonstrate the foundational and practical relevance of the two most important discrete Hilbert space structures to the field of quantum nonlocality.
Collapse
Affiliation(s)
- Armin Tavakoli
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland.
| | - Máté Farkas
- Institute of Theoretical Physics and Astrophysics, National Quantum Information Centre, Faculty of Mathematics, Physics and Informatics, University of Gdansk, 80-952 Gdansk, Poland
- International Centre for Theory of Quantum Technologies, University of Gdansk, 80-308 Gdansk, Poland
| | - Denis Rosset
- Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario N2L 2Y5, Canada
| | - Jean-Daniel Bancal
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Jedrzej Kaniewski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Toscano F, Tasca DS, Rudnicki Ł, Walborn SP. Uncertainty Relations for Coarse-Grained Measurements: An Overview. ENTROPY (BASEL, SWITZERLAND) 2018; 20:E454. [PMID: 33265544 PMCID: PMC7512973 DOI: 10.3390/e20060454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/04/2022]
Abstract
Uncertainty relations involving incompatible observables are one of the cornerstones of quantum mechanics. Aside from their fundamental significance, they play an important role in practical applications, such as detection of quantum correlations and security requirements in quantum cryptography. In continuous variable systems, the spectra of the relevant observables form a continuum and this necessitates the coarse graining of measurements. However, these coarse-grained observables do not necessarily obey the same uncertainty relations as the original ones, a fact that can lead to false results when considering applications. That is, one cannot naively replace the original observables in the uncertainty relation for the coarse-grained observables and expect consistent results. As such, several uncertainty relations that are specifically designed for coarse-grained observables have been developed. In recognition of the 90th anniversary of the seminal Heisenberg uncertainty relation, celebrated last year, and all the subsequent work since then, here we give a review of the state of the art of coarse-grained uncertainty relations in continuous variable quantum systems, as well as their applications to fundamental quantum physics and quantum information tasks. Our review is meant to be balanced in its content, since both theoretical considerations and experimental perspectives are put on an equal footing.
Collapse
Affiliation(s)
- Fabricio Toscano
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro 21941-972, Brazil
| | - Daniel S. Tasca
- Instituto de Física, Universidade Federal Fluminense, Niteroi 24210-346, Brazil
| | - Łukasz Rudnicki
- Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, Erlangen 91058, Germany
- Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw 02-668, Poland
| | - Stephen P. Walborn
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro 21941-972, Brazil
| |
Collapse
|