1
|
Lin S, Yang W, Zhu X, Lan Y, Li K, Zhang Q, Li Y, Hou C, Wang H. Triboelectric micro-flexure-sensitive fiber electronics. Nat Commun 2024; 15:2374. [PMID: 38490979 PMCID: PMC10943239 DOI: 10.1038/s41467-024-46516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Developing fiber electronics presents a practical approach for establishing multi-node distributed networks within the human body, particularly concerning triboelectric fibers. However, realizing fiber electronics for monitoring micro-physiological activities remains challenging due to the intrinsic variability and subtle amplitude of physiological signals, which differ among individuals and scenarios. Here, we propose a technical approach based on a dynamic stability model of sheath-core fibers, integrating a micro-flexure-sensitive fiber enabled by nanofiber buckling and an ion conduction mechanism. This scheme enhances the accuracy of the signal transmission process, resulting in improved sensitivity (detectable signal at ultra-low curvature of 0.1 mm-1; flexure factor >21.8% within a bending range of 10°.) and robustness of fiber under micro flexure. In addition, we also developed a scalable manufacturing process and ensured compatibility with modern weaving techniques. By combining precise micro-curvature detection, micro-flexure-sensitive fibers unlock their full potential for various subtle physiological diagnoses, particularly in monitoring fiber upper limb muscle strength for rehabilitation and training.
Collapse
Affiliation(s)
- Shaomei Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xubin Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yubin Lan
- School of Software, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
| |
Collapse
|
2
|
Li H, Retallick A, Juel A, Heil M, Pihler-Puzović D. Swelling-induced patterning in soft microchannels. SOFT MATTER 2023; 19:8203-8212. [PMID: 37853836 DOI: 10.1039/d3sm01008b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
We study the effect of inflation on the swelling-induced wrinkling of thin elastic membranes in a set-up that is commonly used to create microchannels in lab-on-chip applications. Using a combination of experiments and associated numerical simulations, we demonstrate that the out-of-plane deformation of the inflated membrane and the resulting anisotropic stress lead to two distinct instabilities as the swelling progresses. The membrane first develops small-amplitude wrinkles that retain the cross-channel symmetry. Their wavelength depends on the pressure and is set in a process similar to the axisymmetric buckling of pressurised, uni-axially compressed cylindrical shells. As swelling increases, the membrane undergoes a secondary instability during which the wrinkles coarsen into large-amplitude folds whose morphology can be controlled by the degree of pre-inflation. We elucidate the fundamental mechanisms responsible for this behaviour and explain how inflation can be used as a control mechanism in the manufacture of microchannels.
Collapse
Affiliation(s)
- Haolin Li
- Department of Physics & Astronomy and Manchester Centre of Nonlinear Dynamics, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Aidan Retallick
- Department of Mathematics and Manchester Centre of Nonlinear Dynamics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Anne Juel
- Department of Physics & Astronomy and Manchester Centre of Nonlinear Dynamics, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Matthias Heil
- Department of Mathematics and Manchester Centre of Nonlinear Dynamics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Draga Pihler-Puzović
- Department of Physics & Astronomy and Manchester Centre of Nonlinear Dynamics, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
3
|
Liu M, Yu S, He L, Ni Y. Recent progress on crack pattern formation in thin films. SOFT MATTER 2022; 18:5906-5927. [PMID: 35920383 DOI: 10.1039/d2sm00716a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fascinating pattern formation by quasi-static crack growth in thin films has received increasing interest in both interdisciplinary science and engineering applications. The paper mainly reviews recent experimental and theoretical progress on the morphogenesis and propagation of various quasi-static crack patterns in thin films. Several key factors due to changes in loading types and substrate confinement for choosing crack paths toward different patterns are summarized. Moreover, the effect of crack propagation coupled to other competing or coexisting stress-relaxation processes in thin films, such as interface debonding/delamination and buckling instability, on the formation and transition of crack patterns is discussed. Discussions on the sources and changes in the driving force that determine crack pattern evolution may provide guidelines for the reliability and failure mechanism of thin film structures by cracking and for controllable fabrication of various crack patterns in thin films.
Collapse
Affiliation(s)
- Mengqi Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Linghui He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Yong Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
4
|
Fan X, Deng C, Gao H, Jiao B, Liu Y, Chen F, Deng L, Xiong W. 3D printing of nanowrinkled architectures via laser direct assembly. SCIENCE ADVANCES 2022; 8:eabn9942. [PMID: 35947660 PMCID: PMC9365276 DOI: 10.1126/sciadv.abn9942] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Structural wrinkles in nature have been widely imitated to enhance the surface functionalities of objects, especially three-dimensional (3D) architectured wrinkles, holding promise for emerging applications in mechanical, electrical, and biological processes. However, the fabrication of user-defined 3D nanowrinkled architectures is a long-pending challenge. Here, we propose a bottom-up laser direct assembly strategy to fabricate multidimensional nanowrinkled architectures in a single-material one-step process. Through the introduction of laser-induced thermal transition into a 3D nanoprinting process for leading the point-by-point nanoscale wrinkling and the self-organization of wrinkle structures, we have demonstrated the program-controlled and on-demand fabrication of multidimensional nanowrinkled structures. Moreover, the precise control of wrinkle morphology with an optimal wavelength of 40 nanometers and the regulation of the dynamic transformation of wrinkled cellular microstructures via interfacial stress mismatch engineering have been achieved. This study provides a universal protocol for constructing nearly arbitrary nanowrinkled architectures and facilitates a new paradigm in nanostructure manufacturing.
Collapse
Affiliation(s)
- Xuhao Fan
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gao
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| | - Binzhang Jiao
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuncheng Liu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fayu Chen
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| |
Collapse
|
5
|
Yang E, Zhang M, Zeng J, Tian F. Wrinkling and restabilization of a hyperelastic PDMS membrane at finite strain. SOFT MATTER 2022; 18:5465-5473. [PMID: 35822864 DOI: 10.1039/d2sm00406b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wrinkles are commonly observed in uniaxially stretched hyperelastic membranes and eventually disappear with the increase of stretching. The widely used scheme at present assumes the material parameters to be empirical values and straightforwardly considers some constitutive models to explore the wrinkling and restabilization behavior. However, this simple treatment may cause deviation from experiment by ignoring the applicability of the models and the authenticity of the input parameters, prompting us to report based on realistic material parameters. This paper presents an experimental, theoretical and numerical investigation on the wrinkling and restabilization behavior of hyperelastic materials. By fitting experimental stress-strain curves of PDMS films, we confirm that the 3-term Ogden model bears a closer resemblance to the experimental data than the widely used neo-Hookean, Mooney-Rivlin, and Arruda-Boyce models under certain circumstances. The simulation results indicate that different constitutive models quantitatively affect the critical buckling strain, wrinkling amplitudes, and restabilization points. Furthermore, the isolated central bifurcation point solved by Koiter stability theory agrees well with the simulation and experimental results. A 3D phase diagram of stability boundaries was established to gain a comprehensive insight into the effects of geometric parameters (length, width, and thickness) on wrinkling.
Collapse
Affiliation(s)
- Erjie Yang
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Mengnan Zhang
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Jun Zeng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Fucheng Tian
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
6
|
Wang T, Yang Y, Xu F. Mechanics of tension-induced film wrinkling and restabilization: a review. Proc Math Phys Eng Sci 2022; 478:20220149. [PMID: 35818518 PMCID: PMC9257598 DOI: 10.1098/rspa.2022.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 09/01/2024] Open
Abstract
Wrinkling of thin films under tension is omnipresent in nature and modern industry, a phenomenon which has aroused considerable attention during the past two decades because of its intricate nonlinear behaviours and intriguing morphology changes. Here, we review recent advancements in the mechanics of tension-induced film wrinkling and restabilization, by identifying three major stages of its progress: small-strain (less than 5 % ) wrinkling of stiff sheets, finite-strain (up to 30 % ) wrinkling and restabilization (isola-centre bifurcation) of soft films, and the effects of curved configurations and material properties on pattern formation. Growing demand for fundamental understanding, quantitative prediction and precise tracking of secondary bifurcation transitions in morphological evolution of thin films helps to advance finite-strain plate/shell theories and sophisticated modelling methods. This progress not only promotes our insightful understanding of complex instability behaviour but also reveals novel phenomena and sheds light on developing wrinkle-tunable membrane structures and functional surfaces.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
| | - Yifan Yang
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
| | - Fan Xu
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
7
|
Liu Y, Sun A, Sridhar S, Li Z, Qin Z, Liu J, Chen X, Lu H, Tang BZ, Xu BB. Spatially and Reversibly Actuating Soft Gel Structure by Harnessing Multimode Elastic Instabilities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36361-36369. [PMID: 34291634 DOI: 10.1021/acsami.1c10431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autonomous shape transformation is key in developing high-performance soft robotics technology; the search for pronounced actuation mechanisms is an ongoing mission. Here, we present the programmable shape morphing of a three-dimensional (3D) curved gel structure by harnessing multimode mechanical instabilities during free swelling. First of all, the coupling of buckling and creasing occurs at the dedicated region of the gel structure, which is attributed to the edge and surface instabilities resulted from structure-defined spatial nonuniformity of swelling. The subsequent developments of post-buckling morphologies and crease patterns collaboratively drive the structural transformation of the gel part from the "open" state to the "closed" state, thus realizing the function of gripping. By utilizing the multi-stimuli-responsive nature of the hydrogel, we recover the swollen gel structure to its initial state, enabling reproducible and cyclic shape evolution. The described soft gel structure capable of shape transformation brings a variety of advantages, such as easy to fabricate, large strain transformation, efficient actuation, and high strength-to-weight ratio, and is anticipated to provide guidance for future applications in soft robotics, flexible electronics, offshore engineering, and healthcare products.
Collapse
Affiliation(s)
- Yingzhi Liu
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Ansu Sun
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Sreepathy Sridhar
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Zhenghong Li
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Zhuofan Qin
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Chen
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Haibao Lu
- Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Bin Xu
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| |
Collapse
|
8
|
Zhou L, Hu K, Zhang W, Meng G, Yin J, Jiang X. Regulating surface wrinkles using light. Natl Sci Rev 2020; 7:1247-1257. [PMID: 34692149 PMCID: PMC8288942 DOI: 10.1093/nsr/nwaa052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/21/2020] [Indexed: 11/13/2022] Open
Abstract
Regulating existing micro and nano wrinkle structures into desired configurations is urgently necessary yet remains challenging, especially modulating wrinkle direction and location on demand. In this work, we propose a novel light-controlled strategy for surface wrinkles, which can dynamically and precisely regulate all basic characteristics of wrinkles, including wavelength, amplitude, direction and location (λ, A, θ and Lc ), and arbitrarily tune wrinkle topographies in two dimensions (2D). By considering the bidirectional Poisson's effect and soft boundary conditions, a modified theoretical model depicting the relation between stress distributions and the basic characteristics was developed to reveal the mechanical mechanism of the regulation strategy. Furthermore, the resulting 2D ordered wrinkles can be used as a dynamic optical grating and a smart template to reversibly regulate the morphology of various functional materials. This study will pave the way for wrinkle regulation and guide fabrication technology for functional wrinkled surfaces.
Collapse
Affiliation(s)
- Liangwei Zhou
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiming Hu
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Meng
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Tan Y, Hu B, Song J, Chu Z, Wu W. Bioinspired Multiscale Wrinkling Patterns on Curved Substrates: An Overview. NANO-MICRO LETTERS 2020; 12:101. [PMID: 34138101 PMCID: PMC7770713 DOI: 10.1007/s40820-020-00436-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/14/2020] [Indexed: 05/23/2023]
Abstract
The surface wrinkling of biological tissues is ubiquitous in nature. Accumulating evidence suggests that the mechanical force plays a significant role in shaping the biological morphologies. Controlled wrinkling has been demonstrated to be able to spontaneously form rich multiscale patterns, on either planar or curved surfaces. The surface wrinkling on planar substrates has been investigated thoroughly during the past decades. However, most wrinkling morphologies in nature are based on the curved biological surfaces and the research of controllable patterning on curved substrates still remains weak. The study of wrinkling on curved substrates is critical for understanding the biological growth, developing three-dimensional (3D) or four-dimensional (4D) fabrication techniques, and creating novel topographic patterns. In this review, fundamental wrinkling mechanics and recent advances in both fabrications and applications of the wrinkling patterns on curved substrates are summarized. The mechanics behind the wrinkles is compared between the planar and the curved cases. Beyond the film thickness, modulus ratio, and mismatch strain, the substrate curvature is one more significant parameter controlling the surface wrinkling. Curved substrates can be both solid and hollow with various 3D geometries across multiple length scales. Up to date, the wrinkling morphologies on solid/hollow core-shell spheres and cylinders have been simulated and selectively produced. Emerging applications of the curved topographic patterns have been found in smart wetting surfaces, cell culture interfaces, healthcare materials, and actuators, which may accelerate the development of artificial organs, stimuli-responsive devices, and micro/nano fabrications with higher dimensions.
Collapse
Affiliation(s)
- Yinlong Tan
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Biru Hu
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Jia Song
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Zengyong Chu
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| | - Wenjian Wu
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| |
Collapse
|