1
|
Paul S, Dhar A, Chaudhuri D. Dynamical crossovers and correlations in a harmonic chain of active particles. SOFT MATTER 2024; 20:8638-8653. [PMID: 39435525 DOI: 10.1039/d4sm00350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We explore the dynamics of a tracer in an active particle harmonic chain, investigating the influence of interactions. Our analysis involves calculating mean-squared displacements (MSDs) and space-time correlations through Green's function techniques and numerical simulations. Depending on chain characteristics, i.e., different time scales determined by interaction stiffness and persistence of activity, tagged-particle MSDs exhibit ballistic, diffusive, and single-file diffusion (SFD) scaling over time, with crossovers explained by our analytic expressions. Our results reveal transitions in bulk particle displacement distributions from an early-time bimodal to late-time Gaussian, passing through regimes of unimodal distributions with finite support and negative excess kurtosis and longer-tailed distributions with positive excess kurtosis. The distributions exhibit data collapse, aligning with ballistic, diffusive, and SFD scaling in the appropriate time regimes. However, at much longer times, the distributions become Gaussian. Finally, we derive analytic expressions for steady-state static and dynamic two-point displacement correlations. We verify these from simulations and highlight the differences from the equilibrium results.
Collapse
Affiliation(s)
- Subhajit Paul
- International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore-560089, India.
- Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India.
| | - Abhishek Dhar
- International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore-560089, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
2
|
Bandyopadhyay S, Chatterjee S, Dutta AK, Karmakar M, Rieger H, Paul R. Ordering kinetics in the active Ising model. Phys Rev E 2024; 109:064143. [PMID: 39020881 DOI: 10.1103/physreve.109.064143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
We undertake a numerical study of the ordering kinetics in the two-dimensional (2D) active Ising model (AIM), a discrete flocking model with a conserved density field coupled to a nonconserved magnetization field. We find that for a quench into the liquid-gas coexistence region and in the ordered liquid region, the characteristic length scale of both the density and magnetization domains follows the Lifshitz-Cahn-Allen growth law, R(t)∼t^{1/2}, consistent with the growth law of passive systems with scalar order parameter and nonconserved dynamics. The system morphology is analyzed with the two-point correlation function and its Fourier transform, the structure factor, which conforms to the well-known Porod's law, a manifestation of the coarsening of compact domains with smooth boundaries. We also find the domain growth exponent unaffected by different noise strengths and self-propulsion velocities of the active particles. However, transverse diffusion is found to play the most significant role in the growth kinetics of the AIM. We extract the same growth exponent by solving the hydrodynamic equations of the AIM.
Collapse
|
3
|
Chakraborty T, Pradhan P. Time-dependent properties of run-and-tumble particles. II. Current fluctuations. Phys Rev E 2024; 109:044135. [PMID: 38755901 DOI: 10.1103/physreve.109.044135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
We investigate steady-state current fluctuations in two models of hardcore run-and-tumble particles (RTPs) on a periodic one-dimensional lattice of L sites, for arbitrary tumbling rate γ=τ_{p}^{-1} and density ρ; model I consists of standard hardcore RTPs, while model II is an analytically tractable variant of model I, called a long-ranged lattice gas (LLG). We show that, in the limit of L large, the fluctuation of cumulative current Q_{i}(T,L) across the ith bond in a time interval T≫1/D grows first subdiffusively and then diffusively (linearly) with T: 〈Q_{i}^{2}〉∼T^{α} with α=1/2 for 1/D≪T≪L^{2}/D and α=1 for T≫L^{2}/D, where D(ρ,γ) is the collective- or bulk-diffusion coefficient; at small times T≪1/D, exponent α depends on the details. Remarkably, regardless of the model details, the scaled bond-current fluctuations D〈Q_{i}^{2}(T,L)〉/2χL≡W(y) as a function of scaled variable y=DT/L^{2} collapse onto a universal scaling curve W(y), where χ(ρ,γ) is the collective particle mobility. In the limit of small density and tumbling rate, ρ,γ→0, with ψ=ρ/γ fixed, there exists a scaling law: The scaled mobility γ^{a}χ(ρ,γ)/χ^{(0)}≡H(ψ) as a function of ψ collapses onto a scaling curve H(ψ), where a=1 and 2 in models I and II, respectively, and χ^{(0)} is the mobility in the limiting case of a symmetric simple exclusion process; notably, the scaling function H(ψ) is model dependent. For model II (LLG), we calculate exactly, within a truncation scheme, both the scaling functions, W(y) and H(ψ). We also calculate spatial correlation functions for the current and compare our theory with simulation results of model I; for both models, the correlation functions decay exponentially, with correlation length ξ∼τ_{p}^{1/2} diverging with persistence time τ_{p}≫1. Overall, our theory is in excellent agreement with simulations and complements the prior findings [T. Chakraborty and P. Pradhan, Phys. Rev. E 109, 024124 (2024)1539-375510.1103/PhysRevE.109.024124].
Collapse
Affiliation(s)
- Tanmoy Chakraborty
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
4
|
Han JH, Lake E, Ro S. Scaling and Localization in Multipole-Conserving Diffusion. PHYSICAL REVIEW LETTERS 2024; 132:137102. [PMID: 38613292 DOI: 10.1103/physrevlett.132.137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/03/2023] [Accepted: 01/30/2024] [Indexed: 04/14/2024]
Abstract
We study diffusion in systems of classical particles whose dynamics conserves the total center of mass. This conservation law leads to several interesting consequences. In finite systems, it allows for equilibrium distributions that are exponentially localized near system boundaries. It also yields an unusual approach to equilibrium, which in d dimensions exhibits scaling with dynamical exponent z=4+d. Similar phenomena occur for dynamics that conserves higher moments of the density, which we systematically classify using a family of nonlinear diffusion equations. In the quantum setting, analogous fermionic systems are shown to form real-space Fermi surfaces, while bosonic versions display a real-space analog of Bose-Einstein condensation.
Collapse
Affiliation(s)
- Jung Hoon Han
- Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ethan Lake
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
| | - Sunghan Ro
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
5
|
Turci F, Jack RL, Wilding NB. Partial and complete wetting of droplets of active Brownian particles. SOFT MATTER 2024; 20:2060-2074. [PMID: 38345308 DOI: 10.1039/d3sm01493b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We study wetting droplets formed of active Brownian particles in contact with a repulsive potential barrier, in a wedge geometry. Our numerical results demonstrate a transition between partially wet and completely wet states, as a function of the barrier height, analogous to the corresponding surface phase transition in passive fluids. We analyse partially wet configurations characterised by a nonzero contact angle θ between the droplet surface and the barrier including the average density profile and its fluctuations. These findings are compared with two equilibrium systems: a Lennard-Jones fluid and a simple contour model for a liquid-vapour interface. We locate the wetting transition where cos(θ) = 1, and the neutral state where cos(θ) = 0. We discuss the implications of these results for possible definitions of surface tensions in active fluids.
Collapse
Affiliation(s)
- Francesco Turci
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
| | - Robert L Jack
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Nigel B Wilding
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
| |
Collapse
|
6
|
Chakraborty T, Pradhan P. Time-dependent properties of run-and-tumble particles: Density relaxation. Phys Rev E 2024; 109:024124. [PMID: 38491605 DOI: 10.1103/physreve.109.024124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/03/2024] [Indexed: 03/18/2024]
Abstract
We characterize collective diffusion of hardcore run-and-tumble particles (RTPs) by explicitly calculating the bulk-diffusion coefficient D(ρ,γ) for arbitrary density ρ and tumbling rate γ, in systems on a d-dimensional periodic lattice. We study two minimal models of RTPs: Model I is the standard version of hardcore RTPs introduced in [Phys. Rev. E 89, 012706 (2014)10.1103/PhysRevE.89.012706], whereas model II is a long-ranged lattice gas (LLG) with hardcore exclusion, an analytically tractable variant of model I. We calculate the bulk-diffusion coefficient analytically for model II and numerically for model I through an efficient Monte Carlo algorithm; notably, both models have qualitatively similar features. In the strong-persistence limit γ→0 (i.e., dimensionless ratio r_{0}γ/v→0), with v and r_{0} being the self-propulsion speed and particle diameter, respectively, the fascinating interplay between persistence and interaction is quantified in terms of two length scales: (i) persistence length l_{p}=v/γ and (ii) a "mean free path," being a measure of the average empty stretch or gap size in the hopping direction. We find that the bulk-diffusion coefficient varies as a power law in a wide range of density: D∝ρ^{-α}, with exponent α gradually crossing over from α=2 at high densities to α=0 at low densities. As a result, the density relaxation is governed by a nonlinear diffusion equation with anomalous spatiotemporal scaling. In the thermodynamic limit, we show that the bulk-diffusion coefficient-for ρ,γ→0 with ρ/γ fixed-has a scaling form D(ρ,γ)=D^{(0)}F(ρav/γ), where a∼r_{0}^{d-1} is particle cross section and D^{(0)} is proportional to the diffusion coefficient of noninteracting particles; the scaling function F(ψ) is calculated analytically for model II (LLG) and numerically for model I. Our arguments are independent of dimensions and microscopic details.
Collapse
Affiliation(s)
- Tanmoy Chakraborty
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Punyabrata Pradhan
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
7
|
Mangeat M, Chakraborty S, Wysocki A, Rieger H. Stationary particle currents in sedimenting active matter wetting a wall. Phys Rev E 2024; 109:014616. [PMID: 38366426 DOI: 10.1103/physreve.109.014616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
Recently it was predicted, on the basis of a lattice gas model, that scalar active matter in a gravitational field would rise against gravity up a confining wall or inside a thin capillary-in spite of repulsive particle-wall interactions [Phys. Rev. Lett. 124, 048001 (2020)0031-900710.1103/PhysRevLett.124.048001]. In this paper we confirm this prediction with sedimenting active Brownian particles (ABPs) in a box numerically and elucidate the mechanism leading to the formation of a meniscus rising above the bulk of the sedimentation region. The height of the meniscus increases with the activity of the system, algebraically with the Péclet number. The formation of the meniscus is determined by a stationary circular particle current, a vortex, centered at the base of the meniscus, whose size and strength increase with the ABP activity. The origin of these vortices can be traced back to the confinement of the ABPs in a box: already the stationary state of ideal (noninteracting) ABPs without gravitation displays circular currents that arrange in a highly symmetric way in the eight octants of the box. Gravitation distorts this vortex configuration downward, leaving two major vortices at the two side walls, with a strong downward flow along the walls. Repulsive interactions between the ABPs change this situation only as soon as motility induced phase separation (MIPS) sets in and forms a dense, sedimented liquid region at the bottom, which pushes the center of the vortex upwards towards the liquid-gas interface. Self-propelled particles therefore represent an impressive realization of scalar active matter that forms stationary particle currents being able to perform visible work against gravity or any other external field, which we predict to be observable experimentally in active colloids under gravitation.
Collapse
Affiliation(s)
- Matthieu Mangeat
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Shauri Chakraborty
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Adam Wysocki
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Heiko Rieger
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Jose S, Rosso A, Ramola K. Generalized disorder averages and current fluctuations in run and tumble particles. Phys Rev E 2023; 108:L052601. [PMID: 38115454 DOI: 10.1103/physreve.108.l052601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
We present exact results for the fluctuations in the number of particles crossing the origin up to time t in a collection of noninteracting run and tumble particles in one dimension. In contrast to passive systems, such active particles are endowed with two inherent degrees of freedom, positions and velocities, which can be used to construct density and magnetization fields. We introduce generalized disorder averages associated with both these fields and perform annealed and quenched averages over various initial conditions. We show that the variance σ^{2} of the current in annealed versus quenched magnetization situations exhibits a surprising difference at short times, σ^{2}∼t vs σ^{2}∼t^{2}, respectively, with a sqrt[t] behavior emerging at large times. Our analytical results demonstrate that in the strictly quenched scenario, where both the density and magnetization fields are initially frozen, the fluctuations in the current are strongly suppressed. Importantly, these anomalous fluctuations cannot be obtained solely by freezing the density field.
Collapse
Affiliation(s)
- Stephy Jose
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Alberto Rosso
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Kabir Ramola
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
9
|
Scandolo M, Pausch J, Cates ME. Active Ising Models of flocking: a field-theoretic approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:103. [PMID: 37882912 PMCID: PMC10603022 DOI: 10.1140/epje/s10189-023-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Using an approach based on Doi-Peliti field theory, we study several different Active Ising Models (AIMs), in each of which collective motion (flocking) of self-propelled particles arises from the spontaneous breaking of a discrete symmetry. We test the predictive power of our field theories by deriving the hydrodynamic equations for the different microscopic choices of aligning processes that define our various models. At deterministic level, the resulting equations largely confirm known results, but our approach has the advantage of allowing systematic generalization to include noise terms. Study of the resulting hydrodynamics allows us to confirm that the various AIMs share the same phenomenology of a first-order transition from isotropic to flocked states whenever the self-propulsion speed is nonzero, with an important exception for the case where particles align only pairwise locally. Remarkably, this variant fails entirely to give flocking-an outcome that was foreseen in previous work, but is confirmed here and explained in terms of the scalings of various terms in the hydrodynamic limit. Finally, we discuss our AIMs in the limit of zero self-propulsion where the ordering transition is continuous. In this limit, each model is still out of equilibrium because the dynamical rules continue to break detailed balance, yet it has been argued that an equilibrium universality class (Model C) prevails. We study field-theoretically the connection between our AIMs and Model C, arguing that these particular models (though not AIMs in general) lie outside the Model C class. We link this to the fact that in our AIMs without self-propulsion, detailed balance is not merely still broken, but replaced by a different dynamical symmetry in which the dynamics of the particle density is independent of the spin state. .
Collapse
Affiliation(s)
- Mattia Scandolo
- Dip. di Fisica, Università Sapienza, 00185, Rome, Italy.
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK.
| | - Johannes Pausch
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| |
Collapse
|
10
|
Agranov T, Cates ME, Jack RL. Tricritical Behavior in Dynamical Phase Transitions. PHYSICAL REVIEW LETTERS 2023; 131:017102. [PMID: 37478424 DOI: 10.1103/physrevlett.131.017102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 05/23/2023] [Indexed: 07/23/2023]
Abstract
We identify a new scenario for dynamical phase transitions associated with time-integrated observables occurring in diffusive systems described by the macroscopic fluctuation theory. It is characterized by the pairwise meeting of first- and second-order bias-induced phase transition curves at two tricritical points. We formulate a simple, general criterion for its appearance and derive an exact Landau theory for the tricritical behavior. The scenario is demonstrated in three examples: the simple symmetric exclusion process biased by an activity-related structural observable; the Katz-Lebowitz-Spohn lattice gas model biased by its current; and in an active lattice gas biased by its entropy production.
Collapse
Affiliation(s)
- Tal Agranov
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
| | - Robert L Jack
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Karmakar M, Chatterjee S, Mangeat M, Rieger H, Paul R. Jamming and flocking in the restricted active Potts model. Phys Rev E 2023; 108:014604. [PMID: 37583144 DOI: 10.1103/physreve.108.014604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 08/17/2023]
Abstract
We study the active Potts model with either site occupancy restriction or on-site repulsion to explore jamming and kinetic arrest in a flocking model. The incorporation of such volume exclusion features leads to a surprisingly rich variety of self-organized spatial patterns. While bands and lanes of moving particles commonly occur without or under weak volume exclusion, strong volume exclusion along with low temperature, high activity, and large particle density facilitates jams due to motility-induced phase separation. Through several phase diagrams, we identify the phase boundaries separating the jammed and free-flowing phases and study the transition between these phases which provide us with both qualitative and quantitative predictions of how jamming might be delayed or dissolved. We further formulate and analyze a hydrodynamic theory for the restricted APM which predicts various features of the microscopic model.
Collapse
Affiliation(s)
- Mintu Karmakar
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Swarnajit Chatterjee
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Matthieu Mangeat
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Heiko Rieger
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
- INM-Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken, Germany
| | - Raja Paul
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Metson MJ, Evans MR, Blythe RA. From a microscopic solution to a continuum description of active particles with a recoil interaction in one dimension. Phys Rev E 2023; 107:044134. [PMID: 37198777 DOI: 10.1103/physreve.107.044134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
We consider a model system of persistent random walkers that can jam, pass through each other, or jump apart (recoil) on contact. In a continuum limit, where particle motion between stochastic changes in direction becomes deterministic, we find that the stationary interparticle distribution functions are governed by an inhomogeneous fourth-order differential equation. Our main focus is on determining the boundary conditions that these distribution functions should satisfy. We find that these do not arise naturally from physical considerations, but they need to be carefully matched to functional forms that arise from the analysis of an underlying discrete process. The interparticle distribution functions, or their first derivatives, are generically found to be discontinuous at the boundaries.
Collapse
Affiliation(s)
- M J Metson
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - M R Evans
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - R A Blythe
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
13
|
Shimomura K, Ishitsuka Y, Ohta H. Emergent centrality in rank-based supplanting process. Phys Rev E 2023; 107:034114. [PMID: 37072958 DOI: 10.1103/physreve.107.034114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/13/2023] [Indexed: 04/20/2023]
Abstract
We propose a stochastic process of interacting many agents, which is inspired by rank-based supplanting dynamics commonly observed in a group of Japanese macaques. In order to characterize the breaking of permutation symmetry with respect to agents' rank in the stochastic process, we introduce a rank-dependent quantity, overlap centrality, which quantifies how often a given agent overlaps with the other agents. We give a sufficient condition in a wide class of the models such that overlap centrality shows perfect correlation in terms of the agents' rank in the zero-supplanting limit. We also discuss a singularity of the correlation in the case of interaction induced by a Potts energy.
Collapse
Affiliation(s)
- Kenji Shimomura
- Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuhiro Ishitsuka
- Institute of Mathematics for Industry, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroki Ohta
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
14
|
Benvegnen B, Chaté H, Krapivsky PL, Tailleur J, Solon A. Flocking in one dimension: Asters and reversals. Phys Rev E 2022; 106:054608. [PMID: 36559354 DOI: 10.1103/physreve.106.054608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
We study the one-dimensional active Ising model in which aligning particles undergo diffusion biased by the signs of their spins. The phase diagram obtained varying the density of particles, their hopping rate, and the temperature controlling the alignment shows a homogeneous disordered phase but no homogeneous ordered one, as well as two phases with localized dense structures. In the flocking phase, large ordered aggregates move ballistically and stochastically reverse their direction of motion. In what we termed the "aster" phase, dense immobile aggregates of opposite magnetization face each other, exchanging particles, without any net motion of the aggregates. Using a combination of numerical simulations and mean-field theory, we study the evolution of the shapes of the flocks, the statistics of their reversal times, and their coarsening dynamics. Solving exactly for the zero-temperature dynamics of an aster allows us to understand their coarsening, which shows extremal dynamics, while mean-field equations account for their shape.
Collapse
Affiliation(s)
- Brieuc Benvegnen
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Hugues Chaté
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
| | - Pavel L Krapivsky
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Julien Tailleur
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Alexandre Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
15
|
Yu H, Thijssen K, Jack RL. Perpendicular and parallel phase separation in two-species driven diffusive lattice gases. Phys Rev E 2022; 106:024129. [PMID: 36110007 DOI: 10.1103/physreve.106.024129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
We study three different lattice models in which two species of diffusing particles are driven in opposite directions by an electric field. We focus on dynamical phase transitions that involve phase separation into domains that may be parallel or perpendicular to a driving field. In all cases, the perpendicular state appears for weak driving, consistent with previous work. For strong driving, we introduce two models that support the parallel state. In one model, this state occurs because of the inclusion of dynamical rules that enhance lateral diffusion during collisions; in the other, it is a result of a nearest-neighbor attractive or repulsive interaction between particles of the same or opposite species. We discuss the connections between these results and the behavior found in off-lattice systems, including laning and freezing by heating.
Collapse
Affiliation(s)
- Honghao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kristian Thijssen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert L Jack
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
16
|
Jose S, Mandal D, Barma M, Ramola K. Active random walks in one and two dimensions. Phys Rev E 2022; 105:064103. [PMID: 35854533 DOI: 10.1103/physreve.105.064103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
We investigate active lattice walks: biased continuous time random walks which perform orientational diffusion between lattice directions in one and two spatial dimensions. We study the occupation probability of an arbitrary site on the lattice in one and two dimensions and derive exact results in the continuum limit. Next, we compute the large deviation free-energy function in both one and two dimensions, which we use to compute the moments and the cumulants of the displacements exactly at late times. Our exact results demonstrate that the cross-correlations between the motion in the x and y directions in two dimensions persist in the large deviation function. We also demonstrate that the large deviation function of an active particle with diffusion displays two regimes, with differing diffusive behaviors. We verify our analytic results with kinetic Monte Carlo simulations of an active lattice walker in one and two dimensions.
Collapse
Affiliation(s)
- Stephy Jose
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Dipanjan Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Mustansir Barma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kabir Ramola
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
17
|
Codina J, Mahault B, Chaté H, Dobnikar J, Pagonabarraga I, Shi XQ. Small Obstacle in a Large Polar Flock. PHYSICAL REVIEW LETTERS 2022; 128:218001. [PMID: 35687474 DOI: 10.1103/physrevlett.128.218001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
We show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these bands interact, yielding a never-ending chaotic dynamics that constitutes a new disordered phase of the system. While most of these results were obtained using simulations of aligning self-propelled particles, we find similar phenomena at the continuous level, not when considering the basic Toner-Tu hydrodynamic theory, but in simulations of truncations of the relevant Boltzmann equation.
Collapse
Affiliation(s)
- Joan Codina
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
- Sorbonne Université, CNRS UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Jure Dobnikar
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, 08028 Barcelona, Spain
- Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
18
|
Ben Dor Y, Ro S, Kafri Y, Kardar M, Tailleur J. Disordered boundaries destroy bulk phase separation in scalar active matter. Phys Rev E 2022; 105:044603. [PMID: 35590561 DOI: 10.1103/physreve.105.044603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/11/2022] [Indexed: 06/15/2023]
Abstract
We show that disordered boundaries destroy bulk phase separation in scalar active systems in dimension d<d_{c}=3. This is in strong contrast with the equilibrium case where boundaries have no impact on the bulk of phase-separated systems. The underlying mechanism is revealed by considering a localized deformation of an otherwise flat wall, from which the case of a disordered boundary can be inferred. We find long-ranged correlations of the density field as well as a cascade of eddies which we show prevent bulk phase separation in low enough dimensions. The results are derived for dilute systems as well as in the presence of interactions, under the sole condition that the density field is the unique hydrodynamic mode. Our theoretical calculations are validated by numerical simulations of microscopic active systems.
Collapse
Affiliation(s)
- Ydan Ben Dor
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Sunghan Ro
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
19
|
Ruiz-Pino N, Prados A. Optimal Control of Uniformly Heated Granular Fluids in Linear Response. ENTROPY (BASEL, SWITZERLAND) 2022; 24:131. [PMID: 35052157 PMCID: PMC8774495 DOI: 10.3390/e24010131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023]
Abstract
We present a detailed analytical investigation of the optimal control of uniformly heated granular gases in the linear regime. The intensity of the stochastic driving is therefore assumed to be bounded between two values that are close, which limits the possible values of the granular temperature to a correspondingly small interval. Specifically, we are interested in minimising the connection time between the non-equilibrium steady states (NESSs) for two different values of the granular temperature by controlling the time dependence of the driving intensity. The closeness of the initial and target NESSs make it possible to linearise the evolution equations and rigorously-from a mathematical point of view-prove that the optimal controls are of bang-bang type, with only one switching in the first Sonine approximation. We also look into the dependence of the optimal connection time on the bounds of the driving intensity. Moreover, the limits of validity of the linear regime are investigated.
Collapse
Affiliation(s)
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain;
| |
Collapse
|
20
|
Klamser JU, Dauchot O, Tailleur J. Kinetic Monte Carlo Algorithms for Active Matter Systems. PHYSICAL REVIEW LETTERS 2021; 127:150602. [PMID: 34678030 DOI: 10.1103/physrevlett.127.150602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
We study kinetic Monte Carlo (KMC) descriptions of active particles. We show that, when they rely on purely persistent, active steps, their continuous-time limit is ill-defined, leading to the vanishing of trademark behaviors of active matter such as the motility-induced phase separation, ratchet effects, as well as to a diverging mechanical pressure. We then show how, under an appropriate scaling, mixing passive steps with active ones leads to a well-defined continuous-time limit that however differs from standard active dynamics. Finally, we propose new KMC algorithms whose continuous-time limits lead to the dynamics of active Ornstein-Uhlenbeck, active Brownian, and run-and-tumble particles.
Collapse
Affiliation(s)
- Juliane U Klamser
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Olivier Dauchot
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Julien Tailleur
- Laboratoire Matière et Systèmes Complexes (MSC),UMR 7057 CNRS, Université de Paris, 75205 Paris, France
| |
Collapse
|
21
|
Dittrich F, Speck T, Virnau P. Critical behavior in active lattice models of motility-induced phase separation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:53. [PMID: 33860860 PMCID: PMC8052248 DOI: 10.1140/epje/s10189-021-00058-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/15/2021] [Indexed: 05/04/2023]
Abstract
Lattice models allow for a computationally efficient investigation of motility-induced phase separation (MIPS) compared to off-lattice systems. Simulations are less demanding, and thus, bigger systems can be accessed with higher accuracy and better statistics. In equilibrium, lattice and off-lattice models with comparable interactions belong to the same universality class. Whether concepts of universality also hold for active particles is still a controversial and open question. Here, we examine two recently proposed active lattice systems that undergo MIPS and investigate numerically their critical behavior. In particular, we examine the claim that these systems and MIPS in general belong to the Ising universality class. We also take a more detailed look on the influence and role of rotational diffusion and active velocity in these systems.
Collapse
Affiliation(s)
- Florian Dittrich
- Institute of Physics, Johannes Gutenberg-Universität, Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg-Universität, Mainz, Germany
| | - Peter Virnau
- Institute of Physics, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
22
|
Keta YE, Fodor É, van Wijland F, Cates ME, Jack RL. Collective motion in large deviations of active particles. Phys Rev E 2021; 103:022603. [PMID: 33736055 DOI: 10.1103/physreve.103.022603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
We analyze collective motion that occurs during rare (large deviation) events in systems of active particles, both numerically and analytically. We discuss the associated dynamical phase transition to collective motion, which occurs when the active work is biased towards larger values, and is associated with alignment of particles' orientations. A finite biasing field is needed to induce spontaneous symmetry breaking, even in large systems. Particle alignment is computed exactly for a system of two particles. For many-particle systems, we analyze the symmetry breaking by an optimal-control representation of the biased dynamics, and we propose a fluctuating hydrodynamic theory that captures the emergence of polar order in the biased state.
Collapse
Affiliation(s)
- Yann-Edwin Keta
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- Département de Physique, École normale supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Étienne Fodor
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg
| | - Frédéric van Wijland
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Michael E Cates
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
23
|
Ro S, Kafri Y, Kardar M, Tailleur J. Disorder-Induced Long-Ranged Correlations in Scalar Active Matter. PHYSICAL REVIEW LETTERS 2021; 126:048003. [PMID: 33576681 DOI: 10.1103/physrevlett.126.048003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
We study the impact of quenched random potentials and torques on scalar active matter. Microscopic simulations reveal that motility-induced phase separation is replaced in two dimensions by an asymptotically homogeneous phase with anomalous long-ranged correlations and nonvanishing steady-state currents. Using a combination of phenomenological models and a field-theoretical treatment, we show the existence of a lower-critical dimension d_{c}=4, below which phase separation is only observed for systems smaller than an Imry-Ma length scale. We identify a weak-disorder regime in which the structure factor scales as S(q)∼1/q^{2}, which accounts for our numerics. In d=2, we predict that, at larger scales, the behavior should cross over to a strong-disorder regime. In d>2, these two regimes exist separately, depending on the strength of the potential.
Collapse
Affiliation(s)
- Sunghan Ro
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julien Tailleur
- Université de Paris, laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
24
|
Ravoni A, Angelani L. Lattice model for active flows in microchannels. Phys Rev E 2021; 102:062602. [PMID: 33465978 DOI: 10.1103/physreve.102.062602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/10/2020] [Indexed: 11/07/2022]
Abstract
We introduce a one-dimensional lattice model to study active particles in narrow channel connecting finite reservoirs. The model describes interacting run-and-tumble swimmers exerting pushing forces on neighboring particles, allowing the formation of long active clusters inside the channel. Our model is able to reproduce the emerging oscillatory dynamics observed in full molecular dynamics simulations of self-propelled bacteria [Paoluzzi et al., Phys. Rev. Lett. 115, 188303 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.188303] and allows us to extend in a simple way the analysis to a wide range of system parameters (box length, number of swimmers), taking into account different physical conditions (presence or absence of tumbling, different forms of the entrance probability into the channel). We find that the oscillatory behavior is suppressed for short channels length L<L^{*} and for high tumbling rates λ>λ^{*}, with threshold values L^{*} and λ^{*} which in general depend on physical parameters. Moreover, we find that oscillations persist by using different entrance probabilities, which, however, affect the oscillation properties and the filling dynamics of reservoirs.
Collapse
Affiliation(s)
- Alessandro Ravoni
- Department of Mathematics and Physics, Roma Tre University, 00146 Rome, Italy
| | - Luca Angelani
- ISC-CNR, Institute for Complex Systems, and Dipartimento di Fisica, Università Sapienza, I-00185 Rome, Italy
| |
Collapse
|
25
|
Dandekar R, Chakraborti S, Rajesh R. Hard core run and tumble particles on a one-dimensional lattice. Phys Rev E 2021; 102:062111. [PMID: 33466079 DOI: 10.1103/physreve.102.062111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022]
Abstract
We study the large scale behavior of a collection of hard core run and tumble particles on a one-dimensional lattice with periodic boundary conditions. Each particle has persistent motion in one direction decided by an associated spin variable until the direction of spin is reversed. We map the run and tumble model to a mass transfer model with fluctuating directed bonds. We calculate the steady-state single-site mass distribution in the mass model within a mean field approximation for larger spin-flip rates and by analyzing an appropriate coalescence-fragmentation model for small spin-flip rates. We also calculate the hydrodynamic coefficients of diffusivity and conductivity for both large and small spin-flip rates and show that the Einstein relation is violated in both regimes. We also show how the nongradient nature of the process can be taken into account in a systematic manner to calculate the hydrodynamic coefficients.
Collapse
Affiliation(s)
- Rahul Dandekar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai-600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | | | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai-600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| |
Collapse
|
26
|
Tasaki H. Hohenberg-Mermin-Wagner-Type Theorems for Equilibrium Models of Flocking. PHYSICAL REVIEW LETTERS 2020; 125:220601. [PMID: 33315454 DOI: 10.1103/physrevlett.125.220601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
We study a class of two-dimensional models of classical hard-core particles with Vicsek type "exchange interaction" that aligns the directions of motion of nearby particles. By extending the Hohenberg-Mermin-Wagner theorem for the absence of spontaneous magnetization and the McBryan-Spencer bound for correlation functions, we prove that the models do not spontaneously break the rotational symmetry in their equilibrium states at any nonzero temperature. This provides a counterexample to the well-known argument that the mobility of particles is the key origin of the spontaneous symmetry breaking in two-dimensional Vicsek type models. Our result suggests that the origin of the symmetry breaking should be sought in the absence of a detailed balance condition, or, equivalently, in nonequilibrium nature.
Collapse
Affiliation(s)
- Hal Tasaki
- Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
27
|
O'Byrne J, Tailleur J. Lamellar to Micellar Phases and Beyond: When Tactic Active Systems Admit Free Energy Functionals. PHYSICAL REVIEW LETTERS 2020; 125:208003. [PMID: 33258650 DOI: 10.1103/physrevlett.125.208003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
We consider microscopic models of active particles whose velocities, rotational diffusivities, and tumbling rates depend on the gradient of a local field that is either externally imposed or depends on all particle positions. Despite the fundamental differences between active and passive dynamics at the microscopic scale, we show that a large class of such tactic active systems admit fluctuating hydrodynamics equivalent to those of interacting Brownian colloids in equilibrium. We exploit this mapping to show how taxis may lead to the lamellar and micellar phases observed for soft repulsive colloids. In the context of chemotaxis, we show how the competition between chemoattractant and chemorepellent may lead to a bona fide equilibrium liquid-gas phase separation in which a loss of thermodynamic stability of the fluid signals the onset of a chemotactic collapse.
Collapse
Affiliation(s)
- J O'Byrne
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - J Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
28
|
Chakraborty T, Chakraborti S, Das A, Pradhan P. Hydrodynamics, superfluidity, and giant number fluctuations in a model of self-propelled particles. Phys Rev E 2020; 101:052611. [PMID: 32575180 DOI: 10.1103/physreve.101.052611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/15/2020] [Indexed: 11/07/2022]
Abstract
We derive hydrodynamics of a prototypical one-dimensional model, having variable-range hopping, which mimics passive diffusion and ballistic motion of active, or self-propelled, particles. The model has two main ingredients-the hardcore interaction and the competing mechanisms of short- and long-range hopping. We calculate two density-dependent transport coefficients-the bulk-diffusion coefficient and the conductivity, the ratio of which, despite violation of detailed balance, is connected to particle-number fluctuation by an Einstein relation. In the limit of infinite-range hopping, the model exhibits, upon tuning density ρ (or activity), a "superfluidlike" transition from a finitely conducting fluid phase to an infinitely conducting "superfluid" phase, characterized by a divergence in conductivity χ(ρ)∼(ρ-ρ_{c})^{-1} with ρ_{c} being the critical density. The diverging conductivity greatly increases particle (or vacancy) mobility and thus induces "giant" number fluctuations in the system.
Collapse
Affiliation(s)
- Tanmoy Chakraborty
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Subhadip Chakraborti
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.,International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Arghya Das
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Punyabrata Pradhan
- Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
29
|
Illien P, de Blois C, Liu Y, van der Linden MN, Dauchot O. Speed-dispersion-induced alignment: A one-dimensional model inspired by swimming droplets experiments. Phys Rev E 2020; 101:040602. [PMID: 32422759 DOI: 10.1103/physreve.101.040602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
We investigate the collective dynamics of self-propelled droplets, confined in a one-dimensional microfluidic channel. On the one hand, neighboring droplets align and form large trains of droplets moving in the same direction. On the other hand, the droplets condensate, leaving large regions with very low density. A careful examination of the interactions between two "colliding" droplets demonstrates that local alignment takes place as a result of the interplay between the dispersion of their speeds and the absence of Galilean invariance. Inspired by these observations, we propose a minimalistic 1D model of active particles reproducing such dynamical rules and, combining analytical arguments and numerical evidences, we show that the model exhibits a transition to collective motion in 1D for a large range of values of the control parameters. Condensation takes place as a transient phenomena, which tremendously slows down the dynamics, before the system eventually settles into a homogeneous aligned phase.
Collapse
Affiliation(s)
- Pierre Illien
- Gulliver Lab UMR CNRS 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
- Sorbonne Université, CNRS, Laboratoire PHENIX, UMR CNRS 8234, 75005 Paris, France
| | - Charlotte de Blois
- Gulliver Lab UMR CNRS 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Yang Liu
- LMIS2, Ecole Polytechnique Fdrale de Lausanne, CH-1015 Lausanne Switzerland
| | | | - Olivier Dauchot
- Gulliver Lab UMR CNRS 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
30
|
Wysocki A, Rieger H. Capillary Action in Scalar Active Matter. PHYSICAL REVIEW LETTERS 2020; 124:048001. [PMID: 32058737 DOI: 10.1103/physrevlett.124.048001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 06/10/2023]
Abstract
We study the capacity of active matter to rise in thin tubes against gravity and other related phenomena like wetting of vertical plates and spontaneous imbibition, where a wetting liquid is drawn into a porous medium. This capillary action or capillarity is well known in classical fluids and originates from attractive interactions between the liquid molecules and the container walls, and from the attraction of the liquid molecules among each other. We observe capillarity in a minimal model for scalar active matter with purely repulsive interactions, where an effective attraction emerges due to slowdown during collisions between active particles and between active particles and walls. Simulations indicate that the capillary rise in thin tubes is approximately proportional to the active sedimentation length λ and that the wetting height of a vertical plate grows superlinear with λ. In a disordered porous medium the imbibition height scales as ⟨h⟩∝λϕ_{m}, where ϕ_{m} is its packing fraction. These predictions are highly relevant for suspensions of sedimenting active colloids or motile bacteria in a porous medium under the influence of a constant force field.
Collapse
Affiliation(s)
- Adam Wysocki
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Heiko Rieger
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
31
|
Partridge B, Lee CF. Critical Motility-Induced Phase Separation Belongs to the Ising Universality Class. PHYSICAL REVIEW LETTERS 2019; 123:068002. [PMID: 31491158 DOI: 10.1103/physrevlett.123.068002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Indexed: 06/10/2023]
Abstract
A collection of self-propelled particles with volume exclusion interactions can exhibit the phenomenology of a gas-liquid phase separation, known as motility-induced phase separation (MIPS). The nonequilibrium nature of the system is fundamental to the phase transition; however, it is unclear whether MIPS at criticality contributes a novel universality class to nonequilibrium physics. We demonstrate here that this is not the case by showing that a generic critical MIPS belongs to the Ising universality class with conservative dynamics.
Collapse
Affiliation(s)
- Benjamin Partridge
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
32
|
Chatterjee R, Segall N, Merrigan C, Ramola K, Chakraborty B, Shokef Y. Motion of active tracer in a lattice gas with cross-shaped particles. J Chem Phys 2019; 150:144508. [DOI: 10.1063/1.5085769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rakesh Chatterjee
- School of Mechanical Engineering and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nimrod Segall
- School of Mechanical Engineering and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carl Merrigan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Kabir Ramola
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Bulbul Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Yair Shokef
- School of Mechanical Engineering and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|