1
|
Prech K, Potts PP. Quantum Fluctuation Theorem for Arbitrary Measurement and Feedback Schemes. PHYSICAL REVIEW LETTERS 2024; 133:140401. [PMID: 39423400 DOI: 10.1103/physrevlett.133.140401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
Fluctuation theorems and the second law of thermodynamics are powerful relations constraining the behavior of out-of-equilibrium systems. While there exist generalizations of these relations to feedback controlled quantum systems, their applicability is limited, in particular when considering strong and continuous measurements. In this Letter, we overcome this shortcoming by deriving a novel fluctuation theorem, and the associated second law of information thermodynamics, which remain applicable in arbitrary feedback control scenarios. In our second law, the entropy production is bounded by the coarse-grained entropy production that is inferrable from the measurement outcomes, an experimentally accessible quantity that does not diverge even under strong continuous measurements. We illustrate our results by a qubit undergoing discrete and continuous measurement, where our approach provides a useful bound on the entropy production for all measurement strengths.
Collapse
|
2
|
Ferreira J, Jin T, Mannhart J, Giamarchi T, Filippone M. Transport and Nonreciprocity in Monitored Quantum Devices: An Exact Study. PHYSICAL REVIEW LETTERS 2024; 132:136301. [PMID: 38613271 DOI: 10.1103/physrevlett.132.136301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 04/14/2024]
Abstract
We study noninteracting fermionic systems undergoing continuous monitoring and driven by biased reservoirs. Averaging over the measurement outcomes, we derive exact formulas for the particle and heat flows in the system. We show that these currents feature competing elastic and inelastic components, which depend nontrivially on the monitoring strength γ. We highlight that monitor-induced inelastic processes lead to nonreciprocal currents, allowing one to extract work from measurements without active feedback control. We illustrate our formalism with two distinct monitoring schemes providing measurement-induced power or cooling. Optimal performances are found for values of the monitoring strength γ, which are hard to address with perturbative approaches.
Collapse
Affiliation(s)
- João Ferreira
- Department of Quantum Matter Physics, École de Physique University of Geneva, 1211 Geneva, Switzerland
| | - Tony Jin
- Department of Quantum Matter Physics, École de Physique University of Geneva, 1211 Geneva, Switzerland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Jochen Mannhart
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, École de Physique University of Geneva, 1211 Geneva, Switzerland
| | - Michele Filippone
- IRIG-MEM-L_Sim, Université Grenoble Alpes, CEA, Grenoble INP, Grenoble 38000, France
| |
Collapse
|
3
|
V K, Joseph T. Information engine with feedback delay based on a two-level system. Phys Rev E 2024; 109:034121. [PMID: 38632813 DOI: 10.1103/physreve.109.034121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
An information engine based on a two-level system in contact with a thermal reservoir is studied analytically. The model incorporates delay time between the measurement of the state of the system and the feedback. The engine efficiency and work extracted per cycle are studied as a function of delay time and energy spacing between the two levels. It is found that the range of delay time over which one can extract work from the information engine increases with temperature. For delay times comparable to the relaxation time, efficiency and work per cycle are maxima when k_{B}T≈2U_{0}, the energy difference between the levels. The generalized Jarzynski equality and the generalized integral fluctuation theorem are explicitly verified for the model. The results from the model are compared with the simulation results for a feedback engine based on a particle moving in a one-dimensional square potential. The variation of efficiency, work per cycle, and efficacy with the delay time is compared using relaxation time in the two-level model as the fitting parameter, leading to a good fit.
Collapse
Affiliation(s)
- Kiran V
- Department of Physics, BITS Pilani K K Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Toby Joseph
- Department of Physics, BITS Pilani K K Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
4
|
Polo-Gómez J. Thermodynamic bound on quantum state discrimination. Phys Rev E 2024; 109:014119. [PMID: 38366527 DOI: 10.1103/physreve.109.014119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/07/2023] [Indexed: 02/18/2024]
Abstract
We show that the second law of thermodynamics poses a restriction on how well we can discriminate between quantum states. By examining an ideal gas with a quantum internal degree of freedom undergoing a cycle based on a proposal by Peres, we establish a nontrivial upper bound on the attainable accuracy of quantum state discrimination. This thermodynamic bound, which relies solely on the linearity of quantum mechanics and the constraint of no work extraction, matches Holevo's bound on accessible information, but is looser than the Holevo-Helstrom bound. The result gives more evidence on the disagreement between thermodynamic entropy and von Neumann entropy and places potential limitations on proposals beyond quantum mechanics.
Collapse
Affiliation(s)
- José Polo-Gómez
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; and Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
| |
Collapse
|
5
|
Liu W, Niu Z, Cheng W, Li X, Duan CK, Yin Z, Rong X, Du J. Experimental Test of the Jarzynski Equality in a Single Spin-1 System Using High-Fidelity Single-Shot Readouts. PHYSICAL REVIEW LETTERS 2023; 131:220401. [PMID: 38101345 DOI: 10.1103/physrevlett.131.220401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
The Jarzynski equality (JE), which connects the equilibrium free energy with nonequilibrium work statistics, plays a crucial role in quantum thermodynamics. Although practical quantum systems are usually multilevel systems, most tests of the JE were executed in two-level systems. A rigorous test of the JE by directly measuring the work distribution of a physical process in a high-dimensional quantum system remains elusive. Here, we report an experimental test of the JE in a single spin-1 system. We realized nondemolition projective measurement of this three-level system via cascading high-fidelity single-shot readouts and directly measured the work distribution utilizing the two-point measurement protocol. The validity of the JE was verified from the nonadiabatic to adiabatic zone and under different effective temperatures. Our work puts the JE on a solid experimental foundation and makes the nitrogen-vacancy (NV) center system a mature toolbox to perform advanced experiments of stochastic quantum thermodynamics.
Collapse
Affiliation(s)
- Wenquan Liu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhibo Niu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Cheng
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xin Li
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chang-Kui Duan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhangqi Yin
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Rong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
6
|
Bilancioni M, Esposito M, Freitas N. A chemical reaction network implementation of a Maxwell demon. J Chem Phys 2023; 159:204103. [PMID: 38010324 DOI: 10.1063/5.0173889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
We study an autonomous model of a Maxwell demon that works by rectifying thermal fluctuations of chemical reactions. It constitutes the chemical analog of a recently studied electronic demon. We characterize its scaling behavior in the macroscopic limit, its performances, and the impact of potential internal delays. We obtain analytical expressions for all quantities of interest: the generated reverse chemical current, the output power, the transduction efficiency, and correlation between the number of molecules. Due to a bound on the nonequilibrium response of its chemical reaction network, we find that, contrary to the electronic case, there is no way for the Maxwell demon to generate a finite output in the macroscopic limit. Finally, we analyze the information thermodynamics of the Maxwell demon from a bipartite perspective. In the limit of a fast demon, the information flow is obtained, its pattern in the state space is discussed, and the behavior of partial efficiencies related to the measurement and feedback processes is examined.
Collapse
Affiliation(s)
- Massimo Bilancioni
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City 1511, G.D. Luxembourg
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City 1511, G.D. Luxembourg
| | - Nahuel Freitas
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City 1511, G.D. Luxembourg
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Cerisola F, Mayo F, Roncaglia AJ. A Wigner Quasiprobability Distribution of Work. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1439. [PMID: 37895560 PMCID: PMC10606729 DOI: 10.3390/e25101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
In this article, we introduce a quasiprobability distribution of work that is based on the Wigner function. This proposal rests on the idea that the work conducted on an isolated system can be coherently measured by coupling the system to a quantum measurement apparatus. In this way, a quasiprobability distribution of work can be defined in terms of the Wigner function of the apparatus. This quasidistribution contains the information of the work statistics and also holds a clear operational definition that can be directly measured in a real experiment. Moreover, it is shown that the presence of quantum coherence in the energy eigenbasis is related with the appearance of features related to non-classicality in the Wigner function such as negativity and interference fringes. On the other hand, from this quasiprobability distribution, it is straightforward to obtain the standard two-point measurement probability distribution of work and also the difference in average energy for initial states with coherences.
Collapse
Affiliation(s)
- Federico Cerisola
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.M.); (A.J.R.)
- Instituto de Física de Buenos Aires (IFIBA), CONICET—Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Franco Mayo
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.M.); (A.J.R.)
- Instituto de Física de Buenos Aires (IFIBA), CONICET—Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
| | - Augusto J. Roncaglia
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.M.); (A.J.R.)
- Instituto de Física de Buenos Aires (IFIBA), CONICET—Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
| |
Collapse
|
8
|
Fadler P, Friedenberger A, Lutz E. Efficiency at Maximum Power of a Carnot Quantum Information Engine. PHYSICAL REVIEW LETTERS 2023; 130:240401. [PMID: 37390443 DOI: 10.1103/physrevlett.130.240401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2023] [Indexed: 07/02/2023]
Abstract
Optimizing the performance of thermal machines is an essential task of thermodynamics. We here consider the optimization of information engines that convert information about the state of a system into work. We concretely introduce a generalized finite-time Carnot cycle for a quantum information engine and optimize its power output in the regime of low dissipation. We derive a general formula for its efficiency at maximum power valid for arbitrary working media. We further investigate the optimal performance of a qubit information engine subjected to weak energy measurements.
Collapse
Affiliation(s)
- Paul Fadler
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Alexander Friedenberger
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| |
Collapse
|
9
|
Schmitt RK, Potts PP, Linke H, Johansson J, Samuelsson P, Rico-Pasto M, Ritort F. Information-to-work conversion in single-molecule experiments: From discrete to continuous feedback. Phys Rev E 2023; 107:L052104. [PMID: 37329008 DOI: 10.1103/physreve.107.l052104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/10/2023] [Indexed: 06/18/2023]
Abstract
We theoretically investigate the extractable work in single molecule unfolding-folding experiments with applied feedback. Using a simple two-state model, we obtain a description of the full work distribution from discrete to continuous feedback. The effect of the feedback is captured by a detailed fluctuation theorem, accounting for the information aquired. We find analytical expressions for the average work extraction as well as an experimentally measurable bound thereof, which becomes tight in the continuous feedback limit. We further determine the parameters for maximal power or rate of work extraction. Although our two-state model only depends on a single effective transition rate, we find qualitative agreement with Monte Carlo simulations of DNA hairpin unfolding-folding dynamics.
Collapse
Affiliation(s)
- Regina K Schmitt
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Patrick P Potts
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Heiner Linke
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Jonas Johansson
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Peter Samuelsson
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Marc Rico-Pasto
- Department of Condensed Matter Physics, Small Biosystems Laboratory, Universitat de Barcelona, C/Marti i Franques 1, 08028 Barcelona, Spain
| | - Felix Ritort
- Department of Condensed Matter Physics, Small Biosystems Laboratory, Universitat de Barcelona, C/Marti i Franques 1, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Freitas N, Esposito M. Information flows in macroscopic Maxwell's demons. Phys Rev E 2023; 107:014136. [PMID: 36797870 DOI: 10.1103/physreve.107.014136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
A CMOS-based implementation of an autonomous Maxwell's demon was recently proposed [Phys. Rev. Lett. 129, 120602 (2022)0031-900710.1103/PhysRevLett.129.120602] to demonstrate that a Maxwell demon can still work at macroscopic scales, provided that its power supply is scaled appropriately. Here we first provide a full analytical characterization of the nonautonomous version of that model. We then study system-demon information flows within generic autonomous bipartite setups displaying a macroscopic limit. By doing so, we can study the thermodynamic efficiency of both the measurement and the feedback process performed by the demon. We find that the information flow is an intensive quantity and that, as a consequence, any Maxwell's demon is bound to stop working above a finite scale if all parameters but the scale are fixed. However, this can be prevented by appropriately scaling the thermodynamic forces. These general results are applied to the autonomous CMOS-based demon.
Collapse
Affiliation(s)
- Nahuel Freitas
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
11
|
V K, Joseph T. Driven particle in a one-dimensional periodic potential with feedback control: Efficiency and power optimization. Phys Rev E 2022; 106:054146. [PMID: 36559401 DOI: 10.1103/physreve.106.054146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
Abstract
A Brownian particle moving in a staircaselike potential with feedback control offers a way to implement Maxwell's demon. An experimental demonstration of such a system using sinusoidal periodic potential carried out by Toyabe et al. [Nat. Phys. 6, 988 (2010)1745-247310.1038/nphys1821] has shown that information about the particle's position can be converted to useful work. In this paper, we carry out a numerical study of a similar system using Brownian dynamics simulation. A Brownian particle moving in a periodic potential under the action of a constant driving force is made to move against the drive by measuring the position of the particle and effecting feedback control by altering potential. The work is extracted during the potential change and from the movement of the particle against the external drive. These work extractions come at the cost of information gathered during the measurement. Efficiency and work extracted per cycle of this information engine are optimized by varying control parameters as well as feedback protocols. Both these quantities are found to crucially depend on the amplitude of the periodic potential as well as the width of the region over which the particle is searched for during the measurement phase. For the case when potential flip (i.e., changing the phase of the potential by 180^{∘}) is used as the feedback mechanism, we argue that the square potential offers a more efficient information-to-work conversion. The control over the numerical parameters and averaging over large number of trial runs allow one to study the nonequilibrium work relations with feedback for this process with precision. It is seen that the generalized integral fluctuation theorem for error-free measurements holds to within the accuracy of the simulation.
Collapse
Affiliation(s)
- Kiran V
- Department of Physics, BITS Pilani K K Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Toby Joseph
- Department of Physics, BITS Pilani K K Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
12
|
Freitas N, Esposito M. Maxwell Demon that Can Work at Macroscopic Scales. PHYSICAL REVIEW LETTERS 2022; 129:120602. [PMID: 36179174 DOI: 10.1103/physrevlett.129.120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Maxwell's demons work by rectifying thermal fluctuations. They are not expected to function at macroscopic scales where fluctuations become negligible and dynamics become deterministic. We propose an electronic implementation of an autonomous Maxwell's demon that indeed stops working in the regular macroscopic limit as the dynamics becomes deterministic. However, we find that if the power supplied to the demon is scaled up appropriately, the deterministic limit is avoided and the demon continues to work. The price to pay is a decreasing thermodynamic efficiency. Our Letter suggests that novel strategies may be found in nonequilibrium settings to bring to the macroscale nontrivial effects so far only observed at microscopic scales.
Collapse
Affiliation(s)
- Nahuel Freitas
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
13
|
Poulsen K, Zinner NT. Dark-state-induced heat rectification. Phys Rev E 2022; 106:034116. [PMID: 36266799 DOI: 10.1103/physreve.106.034116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Heat and noise control is essential for the continued development of quantum technologies. For this purpose, a particularly powerful tool is the heat rectifier, which allows for heat transport in one configuration of two baths but not the reverse. Here we propose a class of rectifiers that exploits the unidirectionality of a low temperature bath to force the system into a dark state, thus blocking heat transport in one configuration of the two baths. However, if the two baths are switched around, a heat current is observed. An implementation using a qutrit coupled to two harmonic oscillators is proposed and rectification values beyond 10^{3} are achieved for realistic parameter values. Furthermore, we show that the heat current can be amplified by an order of magnitude through external driving without diminishing the diode functionality. The heat rectification effect is seen for a large range of parameters and it is robust towards both decay and dephasing.
Collapse
Affiliation(s)
- Kasper Poulsen
- Department of Physics and Astronomy, Aarhus University, Ny munkegade 120, 8000 Aarhus C, Denmark
| | - Nikolaj T Zinner
- Department of Physics and Astronomy, Aarhus University, Ny munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Stefanov VP, Shatokhin VN, Mogilevtsev DS, Kilin SY. Key for a Hidden Quantum State. PHYSICAL REVIEW LETTERS 2022; 129:083603. [PMID: 36053688 DOI: 10.1103/physrevlett.129.083603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Quantum trajectories are crucial to understanding the evolution of open systems. We consider an open cavity mode undergoing up and down multistate quantum jumps due to the emission and absorption of photons. We prove that among all subtrajectories, starting simultaneously from different photon number states, only one survives a long single-run evolution. A random Fock state terminating the subtrajectory becomes known for the ergodic case via the key-the processed record of the input and output photocounts, and the trajectory duration. Based on this result, we propose a robust protocol to infer the Fock state, a valuable resource for quantum applications.
Collapse
Affiliation(s)
- V P Stefanov
- B.I.Stepanov Institute of Physics of NAS of Belarus, Nezavisimosti Ave. 68, 220072, Minsk, Belarus
| | - V N Shatokhin
- Physikalisches Institut and EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
| | - D S Mogilevtsev
- B.I.Stepanov Institute of Physics of NAS of Belarus, Nezavisimosti Ave. 68, 220072, Minsk, Belarus
| | - S Ya Kilin
- B.I.Stepanov Institute of Physics of NAS of Belarus, Nezavisimosti Ave. 68, 220072, Minsk, Belarus
| |
Collapse
|
15
|
Paneru G, Dutta S, Pak HK. Colossal Power Extraction from Active Cyclic Brownian Information Engines. J Phys Chem Lett 2022; 13:6912-6918. [PMID: 35866740 PMCID: PMC9358709 DOI: 10.1021/acs.jpclett.2c01736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Brownian information engines can extract work from thermal fluctuations by utilizing information. To date, the studies on Brownian information engines consider the system in a thermal bath; however, many processes in nature occur in a nonequilibrium setting, such as the suspensions of self-propelled microorganisms or cellular environments called an active bath. Here, we introduce an archetypal model for a Maxwell-demon type cyclic Brownian information engine operating in a Gaussian correlated active bath capable of extracting more work than its thermal counterpart. We obtain a general integral fluctuation theorem for the active engine that includes additional mutual information gained from the active bath with a unique effective temperature. This effective description modifies the generalized second law and provides a new upper bound for the extracted work. Unlike the passive information engine operating in a thermal bath, the active information engine extracts colossal power that peaks at the finite cycle period. Our study provides fundamental insights into the design and functioning of synthetic and biological submicrometer motors in active baths under measurement and feedback control.
Collapse
Affiliation(s)
- Govind Paneru
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department
of Physics, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic of Korea
| | - Sandipan Dutta
- Department
of Physics, Birla Institute of Technology
and Science, Pilani 333031, India
| | - Hyuk Kyu Pak
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department
of Physics, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
16
|
Koshihara K, Yuasa K. Necessity of feedback control for the quantum Maxwell demon in a finite-time steady feedback cycle. Phys Rev E 2022; 106:024134. [PMID: 36109897 DOI: 10.1103/physreve.106.024134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
We revisit quantum Maxwell demon in thermodynamic feedback cycle in the steady-state regime. We derive a generalized version of the Clausius inequality for a finite-time steady feedback cycle with a single heat bath. It is shown to be tighter than previously known ones, and allows us to clarify that feedback control is necessary to violate the standard Clausius inequality.
Collapse
Affiliation(s)
- Kenta Koshihara
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Kazuya Yuasa
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
17
|
Annby-Andersson B, Bakhshinezhad F, Bhattacharyya D, De Sousa G, Jarzynski C, Samuelsson P, Potts PP. Quantum Fokker-Planck Master Equation for Continuous Feedback Control. PHYSICAL REVIEW LETTERS 2022; 129:050401. [PMID: 35960579 DOI: 10.1103/physrevlett.129.050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Measurement and feedback control are essential features of quantum science, with applications ranging from quantum technology protocols to information-to-work conversion in quantum thermodynamics. Theoretical descriptions of feedback control are typically given in terms of stochastic equations requiring numerical solutions, or are limited to linear feedback protocols. Here we present a formalism for continuous quantum measurement and feedback, both linear and nonlinear. Our main result is a quantum Fokker-Planck master equation describing the joint dynamics of a quantum system and a detector with finite bandwidth. For fast measurements, we derive a Markovian master equation for the system alone, amenable to analytical treatment. We illustrate our formalism by investigating two basic information engines, one quantum and one classical.
Collapse
Affiliation(s)
| | - Faraj Bakhshinezhad
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Debankur Bhattacharyya
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Guilherme De Sousa
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Christopher Jarzynski
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Peter Samuelsson
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Patrick P Potts
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
18
|
Yada T, Yoshioka N, Sagawa T. Quantum Fluctuation Theorem under Quantum Jumps with Continuous Measurement and Feedback. PHYSICAL REVIEW LETTERS 2022; 128:170601. [PMID: 35570443 DOI: 10.1103/physrevlett.128.170601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
While the fluctuation theorem in classical systems has been thoroughly generalized under various feedback control setups, an intriguing situation in quantum systems, namely under continuous feedback, remains to be investigated. In this work, we derive the generalized fluctuation theorem under quantum jumps with continuous measurement and feedback. The essence for the derivation is to newly introduce the operationally meaningful information, which we call quantum-classical-transfer (QC-transfer) entropy. QC-transfer entropy can be naturally interpreted as the quantum counterpart of transfer entropy that is commonly used in classical time series analysis. We also verify our theoretical results by numerical simulation and propose an experiment-numerics hybrid verification method. Our work reveals a fundamental connection between quantum thermodynamics and quantum information, which can be experimentally tested with artificial quantum systems such as circuit quantum electrodynamics.
Collapse
Affiliation(s)
- Toshihiro Yada
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nobuyuki Yoshioka
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Poulsen K, Majland M, Lloyd S, Kjaergaard M, Zinner NT. Quantum Maxwell's demon assisted by non-Markovian effects. Phys Rev E 2022; 105:044141. [PMID: 35590580 DOI: 10.1103/physreve.105.044141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Maxwell's demon is the quintessential example of information control, which is necessary for designing quantum devices. In thermodynamics, the demon is an intelligent being who utilizes the entropic nature of information to sort excitations between reservoirs, thus lowering the total entropy. So far, implementations of Maxwell's demon have largely been limited to Markovian baths. In our work, we study the degree to which such a demon may be assisted by non-Markovian effects using a superconducting circuit platform. The setup is two baths connected by a demon-controlled qutrit interface, allowing the transfer of excitations only if the overall entropy of the two baths is lowered. The largest entropy reduction is achieved in a non-Markovian regime and, importantly, due to non-Markovian effects, the demon performance can be optimized through proper timing. Our results demonstrate that non-Markovian effects can be exploited to boost the information transfer rate in quantum Maxwell demons.
Collapse
Affiliation(s)
- Kasper Poulsen
- Department of Physics and Astronomy, Aarhus University, Ny munkegade 120, 8000 Aarhus C, Denmark
| | - Marco Majland
- Department of Physics and Astronomy, Aarhus University, Ny munkegade 120, 8000 Aarhus C, Denmark
| | - Seth Lloyd
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Morten Kjaergaard
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nikolaj T Zinner
- Department of Physics and Astronomy, Aarhus University, Ny munkegade 120, 8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Manikandan SK, Elouard C, Murch KW, Auffèves A, Jordan AN. Efficiently fueling a quantum engine with incompatible measurements. Phys Rev E 2022; 105:044137. [PMID: 35590558 DOI: 10.1103/physreve.105.044137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
We propose a quantum harmonic oscillator measurement engine fueled by simultaneous quantum measurements of the noncommuting position and momentum quadratures of the quantum oscillator. The engine extracts work by moving the harmonic trap suddenly, conditioned on the measurement outcomes. We present two protocols for work extraction, respectively based on single-shot and time-continuous quantum measurements. In the single-shot limit, the oscillator is measured in a coherent state basis; the measurement adds an average of one quantum of energy to the oscillator, which is then extracted in the feedback step. In the time-continuous limit, continuous weak quantum measurements of both position and momentum of the quantum oscillator result in a coherent state, whose coordinates diffuse in time. We relate the extractable work to the noise added by quadrature measurements, and present exact results for the work distribution at arbitrary finite time. Both protocols can achieve unit work conversion efficiency in principle.
Collapse
Affiliation(s)
- Sreenath K Manikandan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
| | - Cyril Elouard
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- QUANTIC laboratory, INRIA Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Kater W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California, 92866, USA
| |
Collapse
|
21
|
Pijn D, Onishchenko O, Hilder J, Poschinger UG, Schmidt-Kaler F, Uzdin R. Detecting Heat Leaks with Trapped Ion Qubits. PHYSICAL REVIEW LETTERS 2022; 128:110601. [PMID: 35363006 DOI: 10.1103/physrevlett.128.110601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The concept of passivity has been conceived to set bounds on the evolution of microscopic systems initialized in thermal states. We experimentally demonstrate the utility of two frameworks, global passivity and passivity deformation, for the detection of coupling to a hidden environment. We employ a trapped-ion quantum processor, where system qubits undergoing unitary evolution may optionally be coupled to an unobserved environment qubit, resulting in a heat leak. Evaluating the measurement data from the system qubits only, we show that global passivity can verify the presence of a heat leak, which is not detectable by a microscopic equivalent of the second law of thermodynamics. Furthermore, we experimentally show that passivity deformation allows for even more sensitive detection of heat leaks, as compared to global passivity, and detect a heat leak with an error margin of 5.3 standard deviations, in a scenario where other tests fail.
Collapse
Affiliation(s)
- D Pijn
- Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - O Onishchenko
- Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - J Hilder
- Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - U G Poschinger
- Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - F Schmidt-Kaler
- Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - R Uzdin
- Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
22
|
Núñez-Corrales S, Jakobsson E. Entropic boundary conditions towards safe artificial superintelligence. J EXP THEOR ARTIF IN 2021. [DOI: 10.1080/0952813x.2021.1952653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Santiago Núñez-Corrales
- Illinois Informatics and National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana IL, USA
| | - Eric Jakobsson
- Molecular and Cellular Biology and National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana IL, USA
| |
Collapse
|
23
|
Touil A, Weber K, Deffner S. Quantum Euler Relation for Local Measurements. ENTROPY (BASEL, SWITZERLAND) 2021; 23:889. [PMID: 34356429 PMCID: PMC8303509 DOI: 10.3390/e23070889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023]
Abstract
In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.
Collapse
Affiliation(s)
- Akram Touil
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; (K.W.); (S.D.)
| | - Kevin Weber
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; (K.W.); (S.D.)
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Sebastian Deffner
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; (K.W.); (S.D.)
- Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil
| |
Collapse
|
24
|
Croucher T, Vaccaro JA. Thermodynamics of memory erasure via a spin reservoir. Phys Rev E 2021; 103:042140. [PMID: 34006013 DOI: 10.1103/physreve.103.042140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
Thermodynamics with multiple conserved quantities offers a promising direction for designing novel devices. For example, Vaccaro and Barnett's [J. A. Vaccaro and S. M. Barnett, Proc. R. Soc. A 467, 1770 (2011)1364-502110.1098/rspa.2010.0577; S. M. Barnett and J. A. Vaccaro, Entropy 15, 4956 (2013)ENTRFG1099-430010.3390/e15114956] proposed information erasure scheme, where the cost of erasure is solely in terms of a conserved quantity other than energy, allows for new kinds of heat engines. In recent work, we studied the discrete fluctuations and average bounds of the erasure cost in spin angular momentum. Here we clarify the costs in terms of the spin equivalent of work, called spinlabor, and the spin equivalent of heat, called spintherm. We show that the previously found bound on the erasure cost of γ^{-1}ln2 can be violated by the spinlabor cost, and only applies to the spintherm cost. We obtain three bounds for spinlabor for different erasure protocols and determine the one that provides the tightest bound. For completeness, we derive a generalized Jarzynski equality and probability of violation which shows that for particular protocols the probability of violation can be surprisingly large. We also derive an integral fluctuation theorem and use it to analyze the cost of information erasure using a spin reservoir.
Collapse
Affiliation(s)
- T Croucher
- Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111, Australia
| | - J A Vaccaro
- Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
25
|
Abstract
Abstract
We consider the solution of the equation of motion of a classical/quantum spin subject to a monochromatical, elliptically polarized external field. The classical Rabi problem can be reduced to third-order differential equations with polynomial coefficients and hence solved in terms of power series in close analogy to the confluent Heun equation occurring for linear polarization. Application of Floquet theory yields physically interesting quantities like the quasienergy as a function of the problem’s parameters and expressions for the Bloch–Siegert shift of resonance frequencies. Various limit cases are thoroughly investigated.
Collapse
|
26
|
Rossi M, Mancino L, Landi GT, Paternostro M, Schliesser A, Belenchia A. Experimental Assessment of Entropy Production in a Continuously Measured Mechanical Resonator. PHYSICAL REVIEW LETTERS 2020; 125:080601. [PMID: 32909766 DOI: 10.1103/physrevlett.125.080601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The information on a quantum process acquired through measurements plays a crucial role in the determination of its nonequilibrium thermodynamic properties. We report on the experimental inference of the stochastic entropy production rate for a continuously monitored mesoscopic quantum system. We consider an optomechanical system subjected to continuous displacement Gaussian measurements and characterize the entropy production rate of the individual trajectories followed by the system in its stochastic dynamics, employing a phase-space description in terms of the Wigner entropy. Owing to the specific regime of our experiment, we are able to single out the informational contribution to the entropy production arising from conditioning the state on the measurement outcomes. Our experiment embodies a significant step towards the demonstration of full-scale control of fundamental thermodynamic processes at the mesoscopic quantum scale.
Collapse
Affiliation(s)
- Massimiliano Rossi
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Luca Mancino
- Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queens University, Belfast BT7 1NN, United Kingdom
| | - Gabriel T Landi
- Instituto de Física, Universidade de São Paulo, CEP 05314-970 São Paulo, Brazil
| | - Mauro Paternostro
- Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queens University, Belfast BT7 1NN, United Kingdom
| | - Albert Schliesser
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alessio Belenchia
- Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queens University, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
27
|
Monsel J, Fellous-Asiani M, Huard B, Auffèves A. The Energetic Cost of Work Extraction. PHYSICAL REVIEW LETTERS 2020; 124:130601. [PMID: 32302198 DOI: 10.1103/physrevlett.124.130601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
We analyze work extraction from a qubit into a waveguide (WG) acting as a battery, where work is the coherent component of the energy radiated by the qubit. The process is stimulated by a wave packet whose mean photon number (the battery's charge) can be adjusted. We show that the extracted work is bounded by the qubit's ergotropy, and that the bound is saturated for a large enough battery's charge. If this charge is small, work can still be extracted. Its amount is controlled by the quantum coherence initially injected in the qubit's state, that appears as a key parameter when energetic resources are limited. This new and autonomous scenario for the study of quantum batteries can be implemented with state-of-the-art artificial qubits coupled to WGs.
Collapse
Affiliation(s)
- Juliette Monsel
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Marco Fellous-Asiani
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Benjamin Huard
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
28
|
Landauer's Principle in a Quantum Szilard Engine without Maxwell's Demon. ENTROPY 2020; 22:e22030294. [PMID: 33286068 PMCID: PMC7516751 DOI: 10.3390/e22030294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 11/27/2022]
Abstract
Quantum Szilard engine constitutes an adequate interplay of thermodynamics, information theory and quantum mechanics. Szilard engines are in general operated by a Maxwell’s Demon where Landauer’s principle resolves the apparent paradoxes. Here we propose a Szilard engine setup without featuring an explicit Maxwell’s demon. In a demonless Szilard engine, the acquisition of which-side information is not required, but the erasure and related heat dissipation still take place implicitly. We explore a quantum Szilard engine considering quantum size effects. We see that insertion of the partition does not localize the particle to one side, instead creating a superposition state of the particle being in both sides. To be able to extract work from the system, particle has to be localized at one side. The localization occurs as a result of quantum measurement on the particle, which shows the importance of the measurement process regardless of whether one uses the acquired information or not. In accordance with Landauer’s principle, localization by quantum measurement corresponds to a logically irreversible operation and for this reason it must be accompanied by the corresponding heat dissipation. This shows the validity of Landauer’s principle even in quantum Szilard engines without Maxwell’s demon.
Collapse
|
29
|
Yuge T, Yamaguchi M. Fluctuation theorem in cavity quantum electrodynamics systems. Phys Rev E 2020; 101:022113. [PMID: 32168614 DOI: 10.1103/physreve.101.022113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
We derive an integral fluctuation theorem (FT) in a general setup of cavity quantum electrodynamics systems. In the derivation, a key difficulty lies in a diverging behavior of entropy change arising from the zero-temperature limit of an external bath, which is required to describe the cavity loss. We solve this difficulty from the viewpoint of absolute irreversibility and find that two types of absolute irreversibility contribute to the integral FT. Furthermore, we show that, in a stationary and small cavity-loss condition, these contributions have simple relationships to the average number of photons emitted out of the cavity, and the integral FT yields an approximate form independent of the setup details. We illustrate the general results with a numerical simulation in a model of quantum heat engine.
Collapse
Affiliation(s)
- Tatsuro Yuge
- Department of Physics, Shizuoka University, Suruga, Shizuoka 422-8529, Japan
| | - Makoto Yamaguchi
- Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
30
|
Ivanov DA, Ivanova TY, Caballero-Benitez SF, Mekhov IB. Feedback-Induced Quantum Phase Transitions Using Weak Measurements. PHYSICAL REVIEW LETTERS 2020; 124:010603. [PMID: 31976715 DOI: 10.1103/physrevlett.124.010603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/15/2019] [Indexed: 06/10/2023]
Abstract
We show that applying feedback and weak measurements to a quantum system induces phase transitions beyond the dissipative ones. Feedback enables controlling essentially quantum properties of the transition, i.e., its critical exponent, as it is driven by the fundamental quantum fluctuations due to measurement. Feedback provides the non-Markovianity and nonlinearity to the hybrid quantum-classical system, and enables simulating effects similar to spin-bath problems and Floquet time crystals with tunable long-range (long-memory) interactions.
Collapse
Affiliation(s)
- D A Ivanov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - T Yu Ivanova
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - S F Caballero-Benitez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - I B Mekhov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
31
|
Mohammady MH, Romito A. Efficiency of a cyclic quantum heat engine with finite-size baths. Phys Rev E 2019; 100:012122. [PMID: 31499920 DOI: 10.1103/physreve.100.012122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 11/07/2022]
Abstract
In this paper we investigate the relationship between the efficiency of a cyclic quantum heat engine with the Hilbert space dimension of the thermal baths. By means of a general inequality, we show that the Carnot efficiency can be obtained only when both the hot and cold baths are infinitely large. By further introducing a specific model where the baths are constituted of ensembles of finite-dimensional particles, we further demonstrate the relationship between the engine's power and efficiency, with the dimension of the working substance and the bath particles.
Collapse
Affiliation(s)
- M Hamed Mohammady
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom.,RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84511, Slovakia
| | - Alessandro Romito
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| |
Collapse
|
32
|
Maillet O, Erdman PA, Cavina V, Bhandari B, Mannila ET, Peltonen JT, Mari A, Taddei F, Jarzynski C, Giovannetti V, Pekola JP. Optimal Probabilistic Work Extraction beyond the Free Energy Difference with a Single-Electron Device. PHYSICAL REVIEW LETTERS 2019; 122:150604. [PMID: 31050528 DOI: 10.1103/physrevlett.122.150604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 06/09/2023]
Abstract
We experimentally realize protocols that allow us to extract work beyond the free energy difference from a single-electron transistor at the single thermodynamic trajectory level. With two carefully designed out-of-equilibrium driving cycles featuring kicks of the control parameter, we demonstrate work extraction up to large fractions of k_{B}T or with probabilities substantially greater than 1/2, despite the zero free energy difference over the cycle. Our results are explained in the framework of nonequilibrium fluctuation relations. We thus show that irreversibility can be used as a resource for optimal work extraction even in the absence of feedback from an external operator.
Collapse
Affiliation(s)
- Olivier Maillet
- QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - Paolo A Erdman
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Vasco Cavina
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Bibek Bhandari
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Elsa T Mannila
- QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - Joonas T Peltonen
- QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - Andrea Mari
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Fabio Taddei
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | | | - Vittorio Giovannetti
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Jukka P Pekola
- QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| |
Collapse
|
33
|
Abstract
Conditional expectation values of quantum mechanical observables reflect unique non-classical correlations, and are generally sensitive to decoherence. We consider the circumstances under which such sensitivity to decoherence is removed, namely, when the measurement process is subjected to conservation laws. Specifically, we address systems with additive conserved quantities and identify sufficient conditions for the system state such that its coherence plays no role in the conditional expectation values of observables that commute with the conserved quantity. We discuss our findings for a specific model where the system-detector coupling is given by the Jaynes-Cummings interaction, which is relevant to experiments tracking trajectories of qubits in cavities. Our results clarify, among others, the role of coherence in thermal measurements in current architectures for quantum thermodynamics experiments.
Collapse
|
34
|
Potts PP, Samuelsson P. Detailed Fluctuation Relation for Arbitrary Measurement and Feedback Schemes. PHYSICAL REVIEW LETTERS 2018; 121:210603. [PMID: 30517817 DOI: 10.1103/physrevlett.121.210603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/25/2018] [Indexed: 06/09/2023]
Abstract
Fluctuation relations are powerful equalities that hold far from equilibrium. However, the standard approach to include measurement and feedback schemes may become inapplicable in certain situations, including continuous measurements, precise measurements of continuous variables, and feedback induced irreversibility. Here we overcome these shortcomings by providing a recipe for producing detailed fluctuation relations. Based on this recipe, we derive a fluctuation relation which holds for arbitrary measurement and feedback control. The key insight is that fluctuations inferable from the measurement outcomes may be suppressed by postselection. Our detailed fluctuation relation results in a stringent and experimentally accessible inequality on the extractable work, which is saturated when the full entropy production is inferable from the data.
Collapse
Affiliation(s)
- Patrick P Potts
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Peter Samuelsson
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|