1
|
Tjalma AJ, Galstyan V, Goedhart J, Slim L, Becker NB, ten Wolde PR. Trade-offs between cost and information in cellular prediction. Proc Natl Acad Sci U S A 2023; 120:e2303078120. [PMID: 37792515 PMCID: PMC10576116 DOI: 10.1073/pnas.2303078120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Living cells can leverage correlations in environmental fluctuations to predict the future environment and mount a response ahead of time. To this end, cells need to encode the past signal into the output of the intracellular network from which the future input is predicted. Yet, storing information is costly while not all features of the past signal are equally informative on the future input signal. Here, we show for two classes of input signals that cellular networks can reach the fundamental bound on the predictive information as set by the information extracted from the past signal: Push-pull networks can reach this information bound for Markovian signals, while networks that take a temporal derivative can reach the bound for predicting the future derivative of non-Markovian signals. However, the bits of past information that are most informative about the future signal are also prohibitively costly. As a result, the optimal system that maximizes the predictive information for a given resource cost is, in general, not at the information bound. Applying our theory to the chemotaxis network of Escherichia coli reveals that its adaptive kernel is optimal for predicting future concentration changes over a broad range of background concentrations, and that the system has been tailored to predicting these changes in shallow gradients.
Collapse
Affiliation(s)
- Age J. Tjalma
- AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| | - Vahe Galstyan
- AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| | | | - Lotte Slim
- AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| | - Nils B. Becker
- Theoretical Systems Biology, German Cancer Research Center, 69120Heidelberg, Germany
| | | |
Collapse
|
2
|
Qiao L, Zhang ZB, Zhao W, Wei P, Zhang L. Network design principle for robust oscillatory behaviors with respect to biological noise. eLife 2022; 11:76188. [PMID: 36125857 PMCID: PMC9489215 DOI: 10.7554/elife.76188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Oscillatory behaviors, which are ubiquitous in transcriptional regulatory networks, are often subject to inevitable biological noise. Thus, a natural question is how transcriptional regulatory networks can robustly achieve accurate oscillation in the presence of biological noise. Here, we search all two- and three-node transcriptional regulatory network topologies for those robustly capable of accurate oscillation against the parameter variability (extrinsic noise) or stochasticity of chemical reactions (intrinsic noise). We find that, no matter what source of the noise is applied, the topologies containing the repressilator with positive autoregulation show higher robustness of accurate oscillation than those containing the activator-inhibitor oscillator, and additional positive autoregulation enhances the robustness against noise. Nevertheless, the attenuation of different sources of noise is governed by distinct mechanisms: the parameter variability is buffered by the long period, while the stochasticity of chemical reactions is filtered by the high amplitude. Furthermore, we analyze the noise of a synthetic human nuclear factor κB (NF-κB) signaling network by varying three different topologies and verify that the addition of a repressilator to the activator-inhibitor oscillator, which leads to the emergence of high-robustness motif—the repressilator with positive autoregulation—improves the oscillation accuracy in comparison to the topology with only an activator-inhibitor oscillator. These design principles may be applicable to other oscillatory circuits.
Collapse
Affiliation(s)
- Lingxia Qiao
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Zhi-Bo Zhang
- Center for Quantitative Biology, Peking University, Beijing, China.,Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wei Zhao
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Ping Wei
- Center for Quantitative Biology, Peking University, Beijing, China.,Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China
| |
Collapse
|
3
|
Chakraborty D, Rengaswamy R, Raman K. Designing Biological Circuits: From Principles to Applications. ACS Synth Biol 2022; 11:1377-1388. [PMID: 35320676 DOI: 10.1021/acssynbio.1c00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic circuit design is a well-studied problem in synthetic biology. Ever since the first genetic circuits─the repressilator and the toggle switch─were designed and implemented, many advances have been made in this area of research. The current review systematically organizes a number of key works in this domain by employing the versatile framework of generalized morphological analysis. Literature in the area has been mapped on the basis of (a) the design methodologies used, ranging from brute-force searches to control-theoretic approaches, (b) the modeling techniques employed, (c) various circuit functionalities implemented, (d) key design characteristics, and (e) the strategies used for the robust design of genetic circuits. We conclude our review with an outlook on multiple exciting areas for future research, based on the systematic assessment of key research gaps that have been readily unravelled by our analysis framework.
Collapse
Affiliation(s)
- Debomita Chakraborty
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Articial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
| | - Raghunathan Rengaswamy
- Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Articial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
| | - Karthik Raman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Articial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
| |
Collapse
|
4
|
Monti M, Fiorentino J, Milanetti E, Gosti G, Tartaglia GG. Prediction of Time Series Gene Expression and Structural Analysis of Gene Regulatory Networks Using Recurrent Neural Networks. ENTROPY (BASEL, SWITZERLAND) 2022; 24:141. [PMID: 35205437 PMCID: PMC8871363 DOI: 10.3390/e24020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Methods for time series prediction and classification of gene regulatory networks (GRNs) from gene expression data have been treated separately so far. The recent emergence of attention-based recurrent neural network (RNN) models boosted the interpretability of RNN parameters, making them appealing for the understanding of gene interactions. In this work, we generated synthetic time series gene expression data from a range of archetypal GRNs and we relied on a dual attention RNN to predict the gene temporal dynamics. We show that the prediction is extremely accurate for GRNs with different architectures. Next, we focused on the attention mechanism of the RNN and, using tools from graph theory, we found that its graph properties allow one to hierarchically distinguish different architectures of the GRN. We show that the GRN responded differently to the addition of noise in the prediction by the RNN and we related the noise response to the analysis of the attention mechanism. In conclusion, this work provides a way to understand and exploit the attention mechanism of RNNs and it paves the way to RNN-based methods for time series prediction and inference of GRNs from gene expression data.
Collapse
Affiliation(s)
- Michele Monti
- RNA System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jonathan Fiorentino
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (J.F.); (E.M.); (G.G.)
| | - Edoardo Milanetti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (J.F.); (E.M.); (G.G.)
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (J.F.); (E.M.); (G.G.)
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Gian Gaetano Tartaglia
- RNA System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; (J.F.); (E.M.); (G.G.)
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Breitenbach T, Helfrich-Förster C, Dandekar T. An effective model of endogenous clocks and external stimuli determining circadian rhythms. Sci Rep 2021; 11:16165. [PMID: 34373483 PMCID: PMC8352901 DOI: 10.1038/s41598-021-95391-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Circadian endogenous clocks of eukaryotic organisms are an established and rapidly developing research field. To investigate and simulate in an effective model the effect of external stimuli on such clocks and their components we developed a software framework for download and simulation. The application is useful to understand the different involved effects in a mathematical simple and effective model. This concerns the effects of Zeitgebers, feedback loops and further modifying components. We start from a known mathematical oscillator model, which is based on experimental molecular findings. This is extended with an effective framework that includes the impact of external stimuli on the circadian oscillations including high dose pharmacological treatment. In particular, the external stimuli framework defines a systematic procedure by input-output-interfaces to couple different oscillators. The framework is validated by providing phase response curves and ranges of entrainment. Furthermore, Aschoffs rule is computationally investigated. It is shown how the external stimuli framework can be used to study biological effects like points of singularity or oscillators integrating different signals at once. The mathematical framework and formalism is generic and allows to study in general the effect of external stimuli on oscillators and other biological processes. For an easy replication of each numerical experiment presented in this work and an easy implementation of the framework the corresponding Mathematica files are fully made available. They can be downloaded at the following link: https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/circadian/ .
Collapse
Affiliation(s)
- Tim Breitenbach
- grid.8379.50000 0001 1958 8658Institut für Mathematik, Universität Würzburg, Emil-Fischer-Strasse 30, 97074 Würzburg, Germany
| | | | - Thomas Dandekar
- grid.8379.50000 0001 1958 8658Biozentrum, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Murugan A, Husain K, Rust MJ, Hepler C, Bass J, Pietsch JMJ, Swain PS, Jena SG, Toettcher JE, Chakraborty AK, Sprenger KG, Mora T, Walczak AM, Rivoire O, Wang S, Wood KB, Skanata A, Kussell E, Ranganathan R, Shih HY, Goldenfeld N. Roadmap on biology in time varying environments. Phys Biol 2021; 18:10.1088/1478-3975/abde8d. [PMID: 33477124 PMCID: PMC8652373 DOI: 10.1088/1478-3975/abde8d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/21/2021] [Indexed: 02/02/2023]
Abstract
Biological organisms experience constantly changing environments, from sudden changes in physiology brought about by feeding, to the regular rising and setting of the Sun, to ecological changes over evolutionary timescales. Living organisms have evolved to thrive in this changing world but the general principles by which organisms shape and are shaped by time varying environments remain elusive. Our understanding is particularly poor in the intermediate regime with no separation of timescales, where the environment changes on the same timescale as the physiological or evolutionary response. Experiments to systematically characterize the response to dynamic environments are challenging since such environments are inherently high dimensional. This roadmap deals with the unique role played by time varying environments in biological phenomena across scales, from physiology to evolution, seeking to emphasize the commonalities and the challenges faced in this emerging area of research.
Collapse
Affiliation(s)
- Arvind Murugan
- James Franck Institute, Department of Physics, University of Chicago, Chicago, IL 60637, United States of America
| | - Kabir Husain
- James Franck Institute, Department of Physics, University of Chicago, Chicago, IL 60637, United States of America
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States of America
- Department of Physics, University of Chicago, Chicago, IL 60637, United States of America
| | - Chelsea Hepler
- Department of Medicine, Feinberg School of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Julian M J Pietsch
- SynthSys: Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Peter S Swain
- SynthSys: Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Siddhartha G Jena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States of America
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States of America
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Ragon Institute of the Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139, United States of America
| | - Kayla G Sprenger
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Ragon Institute of the Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139, United States of America
| | - T Mora
- Laboratoire de physique, Ecole normale supérieure, CNRS, PSL Research University, Paris, France
| | - A M Walczak
- Laboratoire de physique, Ecole normale supérieure, CNRS, PSL Research University, Paris, France
| | - O Rivoire
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Kevin B Wood
- Departments of Biophysics and Physics, University of Michigan, Ann Arbor, MI 48109-1055, United States of America
| | - Antun Skanata
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, Rm. 206, New York, NY 10003, United States of America
| | - Edo Kussell
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, Rm. 206, New York, NY 10003, United States of America
| | - Rama Ranganathan
- Center for Physics of Evolving Systems, Biochemistry & Molecular Biology, and the Pritzker School for Molecular Engineering, University of Chicago, Chicago IL 60637, United States of America
| | - Hong-Yan Shih
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States of America
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Nigel Goldenfeld
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States of America
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States of America
| |
Collapse
|
7
|
Malaguti G, ten Wolde PR. Theory for the optimal detection of time-varying signals in cellular sensing systems. eLife 2021; 10:e62574. [PMID: 33594978 PMCID: PMC7946427 DOI: 10.7554/elife.62574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Living cells often need to measure chemical concentrations that vary in time, yet how accurately they can do so is poorly understood. Here, we present a theory that fully specifies, without any adjustable parameters, the optimal design of a canonical sensing system in terms of two elementary design principles: (1) there exists an optimal integration time, which is determined by the input statistics and the number of receptors; and (2) in the optimally designed system, the number of independent concentration measurements as set by the number of receptors and the optimal integration time equals the number of readout molecules that store these measurements and equals the work to store these measurements reliably; no resource is then in excess and hence wasted. Applying our theory to the Escherichia coli chemotaxis system indicates that its integration time is not only optimal for sensing shallow gradients but also necessary to enable navigation in these gradients.
Collapse
|
8
|
Hong L, Lavrentovich DO, Chavan A, Leypunskiy E, Li E, Matthews C, LiWang A, Rust MJ, Dinner AR. Bayesian modeling reveals metabolite-dependent ultrasensitivity in the cyanobacterial circadian clock. Mol Syst Biol 2020; 16:e9355. [PMID: 32496641 PMCID: PMC7271899 DOI: 10.15252/msb.20199355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Mathematical models can enable a predictive understanding of mechanism in cell biology by quantitatively describing complex networks of interactions, but such models are often poorly constrained by available data. Owing to its relative biochemical simplicity, the core circadian oscillator in Synechococcus elongatus has become a prototypical system for studying how collective dynamics emerge from molecular interactions. The oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near-24-h cycles of KaiC phosphorylation can be reconstituted in vitro. Here, we formulate a molecularly detailed but mechanistically naive model of the KaiA-KaiC subsystem and fit it directly to experimental data within a Bayesian parameter estimation framework. Analysis of the fits consistently reveals an ultrasensitive response for KaiC phosphorylation as a function of KaiA concentration, which we confirm experimentally. This ultrasensitivity primarily results from the differential affinity of KaiA for competing nucleotide-bound states of KaiC. We argue that the ultrasensitive stimulus-response relation likely plays an important role in metabolic compensation by suppressing premature phosphorylation at nighttime.
Collapse
Affiliation(s)
- Lu Hong
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Danylo O Lavrentovich
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Present address:
Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Archana Chavan
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
| | - Eugene Leypunskiy
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Eileen Li
- Department of StatisticsUniversity of ChicagoChicagoILUSA
| | - Charles Matthews
- Department of StatisticsUniversity of ChicagoChicagoILUSA
- Present address:
School of MathematicsUniversity of EdinburghEdinburghUK
| | - Andy LiWang
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
- Quantitative and Systems BiologyUniversity of CaliforniaMercedCAUSA
- Center for Circadian BiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
- Chemistry and Chemical BiologyUniversity of CaliforniaMercedCAUSA
- Health Sciences Research InstituteUniversity of CaliforniaMercedCAUSA
- Center for Cellular and Biomolecular MachinesUniversity of CaliforniaMercedCAUSA
| | - Michael J Rust
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- Institute for Genomics and Systems BiologyUniversity of ChicagoChicagoILUSA
| | - Aaron R Dinner
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- James Franck InstituteUniversity of ChicagoChicagoILUSA
| |
Collapse
|
9
|
Marsland R, Cui W, Horowitz JM. The thermodynamic uncertainty relation in biochemical oscillations. J R Soc Interface 2020; 16:20190098. [PMID: 31039695 DOI: 10.1098/rsif.2019.0098] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.
Collapse
Affiliation(s)
- Robert Marsland
- 1 Department of Physics, Boston University , 590 Commonwealth Avenue, Boston, MA 02215 , USA
| | - Wenping Cui
- 1 Department of Physics, Boston University , 590 Commonwealth Avenue, Boston, MA 02215 , USA.,2 Department of Physics, Boston College , 140 Commonwealth Avenue, Chestnut Hill, MA 02467 , USA
| | - Jordan M Horowitz
- 3 Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square , Cambridge, MA 02139 , USA.,4 Department of Biophysics, University of Michigan , Ann Arbor, MI 48109 , USA.,5 Center for the Study of Complex Systems, University of Michigan , Ann Arbor, MI 48109 , USA
| |
Collapse
|