1
|
Kazandjian S, Kircher M, Kastirke G, Williams JB, Schöffler M, Kunitski M, Dörner R, Miteva T, Engin S, Trinter F, Jahnke T, Sisourat N. Interatomic Coulombic decay in small helium clusters. Phys Chem Chem Phys 2023; 25:25711-25719. [PMID: 37721719 DOI: 10.1039/d3cp02885b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Interatomic Coulombic decay (ICD) is an ultrafast non-radiative electronic decay process wherein an excited atom transfers its excess energy to a neighboring species leading to the ionization of the latter. In helium clusters, ICD can take place, for example, after simultaneous ionization and excitation of one helium atom within the cluster. After ICD, two helium ions are created and the system undergoes a Coulomb explosion. In this work, we investigate theoretically ICD in small helium clusters containing between two and seven atoms and compare our findings to two sets of coincidence measurements on clusters of different mean sizes. We provide a prediction on the lifetime of the excited dimer and show that ICD is faster for larger clusters. This is due to (i) the increased number of neighboring atoms (and therefore the number of decay channels) and (ii) the substantial decrease of the interatomic distances. In order to provide more details on the decay dynamics, we report on the kinetic-energy distributions of the helium ions. These distributions clearly show that the ions may undergo charge exchange with the neutral atoms within the cluster, such process is known as frustrated Coulomb explosion. The probability for these charge-exchange processes increases with the size of the clusters and is reflected in our calculated and measured kinetic-energy distributions. These distributions are therefore characteristics of the size distribution of small helium clusters.
Collapse
Affiliation(s)
- Sévan Kazandjian
- Sorbonne Universite, CNRS, Laboratoire de Chimie Physique Matiere et Rayonnement, UMR 7614, F-75005 Paris, France.
| | - Max Kircher
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Gregor Kastirke
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Joshua B Williams
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Markus Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Maksim Kunitski
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Tsveta Miteva
- Sorbonne Universite, CNRS, Laboratoire de Chimie Physique Matiere et Rayonnement, UMR 7614, F-75005 Paris, France.
| | - Selma Engin
- Sorbonne Universite, CNRS, Laboratoire de Chimie Physique Matiere et Rayonnement, UMR 7614, F-75005 Paris, France.
| | - Florian Trinter
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Till Jahnke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany.
| | - Nicolas Sisourat
- Sorbonne Universite, CNRS, Laboratoire de Chimie Physique Matiere et Rayonnement, UMR 7614, F-75005 Paris, France.
| |
Collapse
|
2
|
Mizuse K, Sato U, Tobata Y, Ohshima Y. Rotational spectroscopy of the argon dimer by time-resolved Coulomb explosion imaging of rotational wave packets. Phys Chem Chem Phys 2022; 24:11014-11022. [PMID: 35470358 DOI: 10.1039/d2cp01113a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report time-domain rotational spectroscopy of the argon dimer, Ar2, by implementing time-resolved Coulomb explosion imaging of rotational wave packets. The rotational wave packets are created in Ar2 with a linearly polarized, nonresonant, ultrashort laser pulse, and their spatiotemporal evolution is fully characterized by measuring angular distribution of the fragmented Ar+ promptly ejected from Ar22+ generated by the more intense probe pulse. The pump-probe measurements have been carried out up to a delay time of 16 ns. The alignment parameters, derived from the observed images, exhibit periodic oscillation lasting for more than 15 ns. The pure rotational spectrum of Ar2 is obtained by Fourier transformation of the time traces of the alignment parameters. The frequency resolution in the spectrum is about 90 MHz, the highest ever achieved for Ar2. The rotational constant and the centrifugal distortion constant are determined with much improved precision than the previous experimental results: B0 = 1.72713 ± 0.00009 GHz and D0 = 0.0310 ± 0.0005 MHz. The present B0 value does not match within the quoted experimental uncertainty with that from the VUV spectroscopy, so far accepted as an experimental reference to assess theories. The present improved constants would stand as new references to calibrate state-of-the-art theoretical investigations and an indispensable experimental source for the construction of an accurate empirical intermolecular potential.
Collapse
Affiliation(s)
- Kenta Mizuse
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-9 Ookayama, Meguro, Tokyo 152-8550, Japan. .,Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan.
| | - Urara Sato
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa 252-0373, Japan.
| | - Yuya Tobata
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-9 Ookayama, Meguro, Tokyo 152-8550, Japan.
| | - Yasuhiro Ohshima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-9 Ookayama, Meguro, Tokyo 152-8550, Japan.
| |
Collapse
|
3
|
He PL, Hatsagortsyan KZ, Keitel CH. Nondipole Time Delay and Double-Slit Interference in Tunneling Ionization. PHYSICAL REVIEW LETTERS 2022; 128:183201. [PMID: 35594091 DOI: 10.1103/physrevlett.128.183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Recently two-center interference in single-photon molecular ionization was employed to observe a zeptosecond time delay due to the photon propagation of the internuclear distance in a molecule [Grundmann et al., Science 370, 339 (2020)SCIEAS0036-807510.1126/science.abb9318]. We investigate the possibility of a comparable nondipole time delay in tunneling ionization and decode the emerged time delay signal. With the here newly developed Coulomb-corrected nondipole molecular strong-field approximation, we derive and analyze the photoelectron momentum distribution, the signature of nondipole effects, and the role of the degeneracy of the molecular orbitals. We show that the ejected electron momentum shifts and interference fringes efficiently imprint both the molecule structure and laser parameters. The corresponding nondipole time delay value significantly deviates from that in single-photon ionization. In particular, when the two-center interference in the molecule is destructive, the time delay is independent of the bond length. We also identify the double-slit interference in tunneling ionization of atoms with nonzero angular momentum via a nondipole momentum shift.
Collapse
Affiliation(s)
- Pei-Lun He
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
4
|
Sheng X, Toennies JP, Tang KT. Conformal Analytical Potential for All the Rare Gas Dimers over the Full Range of Internuclear Distances. PHYSICAL REVIEW LETTERS 2020; 125:253402. [PMID: 33416396 DOI: 10.1103/physrevlett.125.253402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
An analytical model for the potential between two rare gas atoms at distances between R=0 to R→∞ is assumed to be conformal with the previously published potential for He_{2} [J. Chem. Phys. 142, 131102 (2015)JCPSA60021-960610.1063/1.4916740]. The potential curves of the rare gas dimers all have the same shape and only depend on the well parameters D_{e} and R_{e}. The potentials and the vibrational levels for the 11 homonuclear and heteronuclear dimers for which recent ab initio calculations are available agree, within several percent, with the ab initio results. For the other rare gas dimers, the new potential provides the first realistic estimates for the potentials.
Collapse
Affiliation(s)
- Xiaowei Sheng
- Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China
| | - J Peter Toennies
- Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 17, D-37077, Göttingen, Germany
| | - K T Tang
- Department of Physics, Pacific Lutheran University, Tacoma, Washington 98447, USA
| |
Collapse
|
5
|
Brieuc F, Schran C, Uhl F, Forbert H, Marx D. Converged quantum simulations of reactive solutes in superfluid helium: The Bochum perspective. J Chem Phys 2020; 152:210901. [DOI: 10.1063/5.0008309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Fabien Brieuc
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christoph Schran
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Felix Uhl
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
6
|
Khan A, Jahnke T, Zeller S, Trinter F, Schöffler M, Schmidt LPH, Dörner R, Kunitski M. Visualizing the Geometry of Hydrogen Dimers. J Phys Chem Lett 2020; 11:2457-2463. [PMID: 32149522 DOI: 10.1021/acs.jpclett.0c00702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The simplest molecular dimer, H2-H2, poses a challenge to both experiment and theory as a system with a multidimensional energy surface that supports only a single weakly bound quantum state. Here, we provide a direct experimental image of the structure of hydrogen dimers [(H2)2, H2-D2, and (D2)2] obtained via femtosecond laser-induced Coulomb explosion imaging. Our results indicate that hydrogen dimers are not restricted to a particular geometry but rather occur as a mixture of all possible configurations. The measured intermolecular distance distributions were used to deduce the isotropic intermolecular potential as well as the binding energies of the dimers.
Collapse
Affiliation(s)
- Arnab Khan
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Till Jahnke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Stefan Zeller
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Florian Trinter
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Markus Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Lothar Ph H Schmidt
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Maksim Kunitski
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| |
Collapse
|
7
|
Piel H, Chrysos M. From Lippmann-Schwinger formulations to a general formula for absolute asymptotic scattering phase functions and shifts: a unified framework for potentials of any range. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1587024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Henri Piel
- LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, Angers, France
| | - Michael Chrysos
- LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, Angers, France
| |
Collapse
|
8
|
Stipanović P, Vranješ Markić L, Gudyma A, Boronat J. Universality of size-energy ratio in four-body systems. Sci Rep 2019; 9:6289. [PMID: 31000736 PMCID: PMC6472412 DOI: 10.1038/s41598-019-42312-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
Universal relationship of scaled size and scaled energy, which was previously established for two- and three-body systems in their ground state, is examined for four-body systems, using Quantum Monte Carlo simulations. We study in detail the halo region, in which systems are extremely weakly bound. Strengthening the interparticle interaction we extend the exploration all the way to classical systems. Universal size-energy law is found for homogeneous tetramers in the case of interaction potentials decaying predominantly as r−6. In the case of mixed tetramers, we also show under which conditions the universal line can approximately describe the size-energy ratio. The universal law can be used to extract ground-state energy from experimentally measurable structural characteristics, as well as for evaluation of theoretical interaction models.
Collapse
Affiliation(s)
- Petar Stipanović
- University of Split, Faculty of Science, R. Boškovića 33, HR-21000, Split, Croatia.
| | | | - Andrii Gudyma
- University of Split, Faculty of Science, R. Boškovića 33, HR-21000, Split, Croatia
| | - Jordi Boronat
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034, Barcelona, Spain
| |
Collapse
|
9
|
Yuan ZQ, Ye DF, Gu YQ, Liu J, Fu LB. Retrieving the excitation and polarization configurations in Coulomb explosion of a trimer driven by strong laser field. OPTICS EXPRESS 2019; 27:3180-3189. [PMID: 30732343 DOI: 10.1364/oe.27.003180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
Ultrafast imaging and manipulating transient molecular structures in chemical reactions and photobiological processes is a fundamental but challenging goal for scientists. Theoretically, the challenge originates from the complex multiple-time-scale correlated electron dynamics and their coupling with the nuclei. Here, we employ classical polyatomic models for this kind of study and take the Coulomb explosion of argon and neon trimers in strong laser fields as an illuminating example. Our results demonstrate that the degree of asymmetry on the kinetic energy release (KER) spectrum, together with a Dalitz plot, constitutes a powerful tool for retrieving the ionization, excitation, and polarization configurations (femtosecond-to-attosecond time-scale electron dynamics) of trimers under strong-field radiation.
Collapse
|