1
|
Qiao L, Vega DA, Schmid F. Stability and Elasticity of Ultrathin Sphere-Patterned Block Copolymer Films. Macromolecules 2024; 57:4629-4634. [PMID: 38765499 PMCID: PMC11100483 DOI: 10.1021/acs.macromol.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Sphere-patterned ultrathin block copolymer films are potentially interesting for a variety of applications in nanotechnology. We use self-consistent field theory to investigate the elastic response of sphere monolayer films with respect to in-plane shear, in-plane extension, compression deformations, and bending. The relations between the in-plane elastic moduli are roughly compatible with the expectations for two-dimensional elastic systems with hexagonal symmetry, with one notable exception: The pure shear and the simple shear moduli differ from each other by roughly 20%. Even more importantly, the bending constants are found to be negative, indicating that free-standing block copolymer membranes made of only a sphere monolayer are inherently unstable above the glass transition. Our results are discussed in view of the experimental findings.
Collapse
Affiliation(s)
- Le Qiao
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Mainz D55099, Germany
| | - Daniel A. Vega
- Instituto
de Física del Sur (IFISUR), Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Universidad Nacional del Sur, Bahía Blanca 8000, Argentina
| | - Friederike Schmid
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Mainz D55099, Germany
| |
Collapse
|
2
|
Qiao L, Giannakou M, Schmid F. An Efficient and Accurate SCF Algorithm for Block Copolymer Films and Brushes Using Adaptive Discretizations. Polymers (Basel) 2024; 16:1228. [PMID: 38732697 PMCID: PMC11085556 DOI: 10.3390/polym16091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Self-consistent field (SCF) theory serves as a robust tool for unraveling the intricate behavior exhibited by soft polymeric materials. However, the accuracy and efficiency of SCF calculations are crucially dependent on the numerical methods employed for system discretization and equation-solving. Here, we introduce a simple three dimensional SCF algorithm that uses real-space methods and adaptive discretization, offering improved accuracy and efficiency for simulating polymeric systems at surfaces. Our algorithm's efficacy is demonstrated through simulations of two distinct polymeric systems, namely, block copolymer (BCP) films and polymer brushes. By enhancing spatial resolution in regions influenced by external forces and employing finer contour discretization at grafting chain ends, we achieve significantly more accurate results at very little additional cost, enabling the study of 3D polymeric systems that were previously computationally challenging. To facilitate the widespread use of the algorithm, we have made our 1D-3D SCF code publicly available.
Collapse
Affiliation(s)
- Le Qiao
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D55099 Mainz, Germany;
| | | | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D55099 Mainz, Germany;
| |
Collapse
|
3
|
Curvature-assisted self-assembly of Brownian squares on cylindrical surfaces. J Colloid Interface Sci 2021; 605:863-870. [PMID: 34371429 DOI: 10.1016/j.jcis.2021.07.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023]
Abstract
HYPOTHESIS We hypothesize that curved surfaces, including cylindrical surfaces, which go beyond prior experiments using flat surfaces, can significantly influence and alter the phase behavior and self-assembly of dense two-dimensional systems of Brownian colloids. EXPERIMENTS Here, we report a first experimental study regarding the self-assembly of Brownian square platelets with an edge length L = 2.3 μm on cylindrical surfaces having different curvatures; these platelets are subjected to a depletion attraction in order to form a monolayer above the cylindrical surface, yet have nearly hard interactions within the monolayer. Simulations are also performed to confirm and explain the experimental observations. FINDINGS Phase diagrams as a function of curvature are determined experimentally. Interestingly, hexagonal rotator crystal structures are observed for tubes having radii > 10.9L, but a tetratic phase is seen instead for the 10.9L tube at the corresponding platelet area fractions. We show that this transition is caused by the curvature-induced orientation-dependence of the depletion attraction between the squares and the underlying cylindrical surface. Brownian dynamics simulation results confirm the experimental observations and also illustrate helical structures formed by squares packing on cylinders. Our results demonstrate a way towards control over the self-assembly of anisotropic particles through curvature and depletion-attraction-induced orientational confinement.
Collapse
|
4
|
Abate AA, Piqueras CM, Vega DA. Defect-Induced Order–Order Phase Transition in Triblock Copolymer Thin Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anabella A. Abate
- Department of Physics. Instituto de Física del Sur (IFISUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | - Cristian M. Piqueras
- Department of Chemical Engineering. Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | - Daniel A. Vega
- Department of Physics. Instituto de Física del Sur (IFISUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| |
Collapse
|
5
|
Zhou Z. Bistability induced by a spontaneous twisting rate for a two-dimensional intrinsically curved filament. Phys Rev E 2021; 103:012410. [PMID: 33601634 DOI: 10.1103/physreve.103.012410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022]
Abstract
We find that a moderate intrinsic twisting rate (ITR) can induce a bistable state for a force-free two-dimensional intrinsically curved filament. There are two different configurations of equal energy in a bistable state so that the filament is clearly different from its three-dimensional counterpart. The smaller the ITR or the larger the intrinsic curvature (IC), the clearer the distinction between two isoenergetic configurations and the longer the filament. In bistable states, the relationship between length and ITR is approximately a hyperbola and relationship between IC and critical ITR is approximately linear. Thermal fluctuation can result in a shift between two isoenergetic configurations, but large bending and twisting rigidities can prevent the shift and maintain the filament in one of these two configurations. Moreover, a filament can have a metastable state and at a finite temperature such a filament has the similar property as that of a filament with bistable state.
Collapse
Affiliation(s)
- Zicong Zhou
- Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan, Republic of China
| |
Collapse
|
6
|
Jangizehi A, Schmid F, Besenius P, Kremer K, Seiffert S. Defects and defect engineering in Soft Matter. SOFT MATTER 2020; 16:10809-10859. [PMID: 33306078 DOI: 10.1039/d0sm01371d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properties, and has also been applied to organic hard materials, defect engineering is rarely used in soft matter design. In this review, we present a survey on investigations on defects and/or defect engineering in nine classes of soft matter composed of liquid crystals, colloids, linear polymers with moderate degree of branching, hyperbranched polymers and dendrimers, conjugated polymers, polymeric networks, self-assembled amphiphiles and proteins, block copolymers and supramolecular polymers. This overview proposes a promising role of this approach for tuning the properties of soft matter.
Collapse
Affiliation(s)
- Amir Jangizehi
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
7
|
Schneider L, Lichtenberg G, Vega D, Müller M. Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies? ACS APPLIED MATERIALS & INTERFACES 2020; 12:50077-50095. [PMID: 33079515 DOI: 10.1021/acsami.0c16987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the confinement-induced formation and stability of helix morphologies in lamella-forming AB diblock copolymers via large-scale, particle-based, single-chain-in-mean-field simulations. Such helix structures are rarely observed in bulk or thin films. Structure formation is induced by quenching incompatibility, χN, from a disordered morphology. If the surfaces of the cylindrical confinement do not prefer one component over the other, we observe that stacked lamellae, with their normals along the cylinder axis, are the preferred morphology. Kinetically, this morphology initially forms close to the cylinder surface, whereas the spontaneous, spinodal microphase separation in the cylinder's interior gives rise to a microemulsion-like morphology, riddled with defects and no directional order. Subsequently, the ordered morphology on the cylinder surface progresses inward, pervading the entire volume. In case that the cylindrical pore is only partially filled, the additional confinement along the cylinder axis generally gives rise to incommensurability between the equilibrium spacing of stacked lamellae and the cylinder height. To accommodate this mismatch, the lamella normals will tilt away from the cylinder axis and generate helices of lamellae on the surface of the cylinder. Again, this order progresses from the cylinder surface inward, generating a chiral morphology. Because the spacing between the internal AB interfaces decreases upon approaching the helix center, the concomitant stress results in a decrease in the number of lamellae and the formation of unique dislocation defects. This type of chiral defect morphology is reproducibly formed by the kinetics of structure formation in partly filled cylindrical pores with nonpreferential surfaces and may find applications in photonic applications.
Collapse
Affiliation(s)
- Ludwig Schneider
- Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Georg Lichtenberg
- Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Daniel Vega
- Instituto de Fı́sica del Sur (IFISUR), Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Universidad Nacional de Sur, 8000 Bahı́a Blanca, Argentina
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Schmid F, Li B. Dynamic Self-Consistent Field Approach for Studying Kinetic Processes in Multiblock Copolymer Melts. Polymers (Basel) 2020; 12:polym12102205. [PMID: 32992992 PMCID: PMC7601758 DOI: 10.3390/polym12102205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/24/2022] Open
Abstract
The self-consistent field theory is a popular and highly successful theoretical framework for studying equilibrium (co)polymer systems at the mesoscopic level. Dynamic density functionals allow one to use this framework for studying dynamical processes in the diffusive, non-inertial regime. The central quantity in these approaches is the mobility function, which describes the effect of chain connectivity on the nonlocal response of monomers to thermodynamic driving fields. In a recent study, one of us and coworkers have developed a method to systematically construct mobility functions from reference fine-grained simulations. Here we focus on melts of linear chains in the Rouse regime and show how the mobility functions can be calculated semi-analytically for multiblock copolymers with arbitrary sequences without resorting to simulations. In this context, an accurate approximate expression for the single-chain dynamic structure factor is derived. Several limiting regimes are discussed. Then we apply the resulting density functional theory to study ordering processes in a two-length scale block copolymer system after instantaneous quenches into the ordered phase. Different dynamical regimes in the ordering process are identified: at early times, the ordering on short scales dominates; at late times, the ordering on larger scales takes over. For large quench depths, the system does not necessarily relax into the true equilibrium state. Our density functional approach could be used for the computer-assisted design of quenching protocols in order to create novel nonequilibrium materials.
Collapse
|
9
|
Binysh J, Pollard J, Alexander GP. Geometry of Bend: Singular Lines and Defects in Twist-Bend Nematics. PHYSICAL REVIEW LETTERS 2020; 125:047801. [PMID: 32794804 DOI: 10.1103/physrevlett.125.047801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
We describe the geometry of bend distortions in liquid crystals and their fundamental degeneracies, which we call β lines; these represent a new class of linelike topological defect in twist-bend nematics. We present constructions for smecticlike textures containing screw and edge dislocations and also for vortexlike structures of double twist and Skyrmions. We analyze their local geometry and global structure, showing that their intersection with any surface is twice the Skyrmion number. Finally, we demonstrate how arbitrary knots and links can be created and describe them in terms of merons, giving a geometric perspective on the fractionalization of Skyrmions.
Collapse
Affiliation(s)
- Jack Binysh
- Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Joseph Pollard
- Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gareth P Alexander
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
10
|
Nielsen BF, Linga G, Christensen A, Mathiesen J. Substrate curvature governs texture orientation in thin films of smectic block copolymers. SOFT MATTER 2020; 16:3395-3406. [PMID: 32159549 DOI: 10.1039/c9sm02389e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of ordered nanometer-scale patterns is interesting in itself, but its practical value depends on the ability to predict and control pattern formation. In this paper we demonstrate theoretically and numerically that engineering of extrinsic as well as intrinsic substrate geometry may provide such a controllable ordering mechanism for block copolymers films. We develop an effective two-dimensional model of thin films of striped-phase diblock copolymers on general curved substrates. The model is obtained as an expansion in the film thickness and thus takes the third dimension into account, which crucially allows us to predict the preferred orientations even in the absence of intrinsic curvature. We determine the minimum-energy textures on several curved surfaces and arrive at a general principle for using substrate curvature as an ordering field, namely that the stripes will tend to align along directions of maximal curvature.
Collapse
Affiliation(s)
| | - Gaute Linga
- PoreLab, The Njord Centre, Department of Physics, University of Oslo, P. O. Box 1048, 0316 Oslo, Norway.
| | - Amalie Christensen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark. and Danmarks Nationalbank, DK-1093 Copenhagen K, Denmark
| | - Joachim Mathiesen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Abate AA, Vu GT, Piqueras CM, del Barrio MC, Gómez LR, Catalini G, Schmid F, Vega DA. Order–Order Phase Transitions Induced by Supercritical Carbon Dioxide in Triblock Copolymer Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Giang Thi Vu
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | | | | | | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | |
Collapse
|
12
|
Huh J, Kim M, Park J. Graphoepitaxial Assembly of Block Copolymer for Bending Stripe Patterns. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201900009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- June Huh
- Department of Chemical and Biological EngineeringKorea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
| | - Mi‐Jeong Kim
- Material Research CenterSamsung Advanced Institute of Technology 130 Samsung‐ro, Yeongtong‐gu Suwon‐si Gyeonggi‐do 16678 Republic of Korea
| | - Jong‐Wan Park
- Department of Biomedical ScienceBK21‐Plus Education ProgramSeoul National University College of Medicine Daehak‐ro, Jongno‐ro Seoul 03080 Republic of Korea
| |
Collapse
|
13
|
Zhu Y, Aissou K, Andelman D, Man X. Orienting Cylinder-Forming Block Copolymer Thin Films: The Combined Effect of Substrate Corrugation and Its Surface Energy. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Karim Aissou
- Institut Européen des Membranes, Université de Montpellier-CNRS-ENSCM, 300 Avenue du Professeur Emile Jeanbrau, F-34090 Montpellier, France
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | |
Collapse
|
14
|
Bore SL, Kolli HB, Kawakatsu T, Milano G, Cascella M. Mesoscale Electrostatics Driving Particle Dynamics in Nonhomogeneous Dielectrics. J Chem Theory Comput 2019; 15:2033-2041. [DOI: 10.1021/acs.jctc.8b01201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Hima Bindu Kolli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Toshihiro Kawakatsu
- Department of Physics, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Giuseppe Milano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan ,Yonezawa, Yamagata-ken 992-8510, Japan
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|