1
|
Jiang SY, Zou F, Wang Y, Huang JF, Xu XW, Liao JQ. Multiple-photon bundle emission in the n-photon Jaynes-Cummings model. OPTICS EXPRESS 2023; 31:15697-15711. [PMID: 37157664 DOI: 10.1364/oe.488167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We study the multiple-photon bundle emission in the n-photon Jaynes-Cummings model composed of a two-level system coupled to a single-mode optical field via the n-photon exciting process. Here, the two-level system is strongly driven by a near-resonant monochromatic field, and hence the system can work in the Mollow regime, in which a super-Rabi oscillation between the zero-photon state and the n-photon state can take place under proper resonant conditions. We calculate the photon number populations and the standard equal-time high-order correlation functions, and find that the multiple-photon bundle emission can occur in this system. The multiple-photon bundle emission is also confirmed by investigating the quantum trajectories of the state populations and both the standard and generalized time-delay second-order correlation functions for multiple-photon bundle. Our work paves the way towards the study of multiple-photon quantum coherent devices, with potential application in quantum information sciences and technologies.
Collapse
|
2
|
Tang J. Quantum switching between nonclassical correlated single photons and two-photon bundles in a two-photon Jaynes-Cummings model. OPTICS EXPRESS 2023; 31:12471-12486. [PMID: 37157406 DOI: 10.1364/oe.487297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We propose a scheme to realize a two-photon Jaynes-Cummings model for a single atom inside an optical cavity. It is shown that the interplay of a laser detuning and atom (cavity) pump (driven) field gives rise to the strong single photon blockade, two-photon bundles, and photon-induced tunneling. With the cavity driven field, strong photon blockade occurs in the weak coupling regime, and switching between single photon blockade and photon-induced tunneling at two-photon resonance are achievable via increasing the driven strength. By turning on the atom pump field, quantum switching between two-photon bundles and photon-induced tunneling at four-photon resonance are realized. More interestingly, the high-quality quantum switching between single photon blockade, two-photon bundles, and photon-induced tunneling at three-photon resonance is achieved with combining the atom pump and cavity driven fields simultaneously. In contrast to the standard two-level Jaynes-Cummings model, our scheme with generating a two-photon (multi-photon) Jaynes-Cummings model reveals a prominent strategy to engineer a series of special nonclassical quantum states, which may pave the way for investigating basic quantum devices to implement in quantum information processing and quantum networks.
Collapse
|
3
|
Li M, Zhang YL, Wu SH, Dong CH, Zou XB, Guo GC, Zou CL. Single-Mode Photon Blockade Enhanced by Bi-Tone Drive. PHYSICAL REVIEW LETTERS 2022; 129:043601. [PMID: 35939014 DOI: 10.1103/physrevlett.129.043601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A scheme for observing photon blockade in a single bosonic mode with weak nonlinearity is proposed and numerically verified. Using a simple bi-tone drive, sub- and super-Poissonian light can be generated with high fidelity. With a periodically poled lithium niobate microcavity, a sub-Poissonian photon source with kHz count rate can be realized. Our proposed scheme is robust against parameter variations of the cavity and extendable to any bosonic system with anharmonic energy levels.
Collapse
Affiliation(s)
- Ming Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yan-Lei Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shu-Hao Wu
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Chun-Hua Dong
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xu-Bo Zou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chang-Ling Zou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
4
|
Hu Q, Dong J, Yin J, Zou B, Zhang Y. Two-photon scattering and correlation in a four-terminal waveguide system. OPTICS EXPRESS 2021; 29:35664-35677. [PMID: 34808996 DOI: 10.1364/oe.438840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Scattering and correlation properties of a two-photon (TP) pulse are studied in a four-terminal waveguide system, i.e., two one-dimensional waveguides connected by a Jaynes-Cummings emitter (JCE). The wave function approach is utilized to exactly calculate the real-time dynamic evolution of the TP transport. When the width of the incident TP Gaussian pulse is much larger than the photon wavelength, the TP transmission spectra approach that of the corresponding single photon cases and are almost independent of the pulse width. On the contrary, as the pulse width is comparable to the photon wavelength, the TP transmission and correlation both show strong dependence on the pulse width. The resonant scattering due to the JCE and the photon interference together determine the TP correlation. When the distance between the TPs is small, the TP correlations between any two terminals for the scattered TP pulse are much different from those for the incident TP pulse and therefore, such a four-terminal waveguide system provides a way to control the TP correlation.
Collapse
|
5
|
Mohamed ABA, Khalil EM, Yassen MF, Eleuch H. Two-Qubit Local Fisher Information Correlation beyond Entanglement in a Nonlinear Generalized Cavity with an Intrinsic Decoherence. ENTROPY 2021; 23:e23030311. [PMID: 33800739 PMCID: PMC7999430 DOI: 10.3390/e23030311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 11/23/2022]
Abstract
In this paper, we study a Hamiltonian system constituted by two coupled two-level atoms (qubits) interacting with a nonlinear generalized cavity field. The nonclassical two-qubit correlation dynamics are investigated using Bures distance entanglement and local quantum Fisher information under the influences of intrinsic decoherence and qubit–qubit interaction. The effects of the superposition of two identical generalized coherent states and the initial coherent field intensity on the generated two-qubit correlations are investigated. Entanglement of sudden death and sudden birth of the Bures distance entanglement as well as the sudden changes in local Fisher information are observed. We show that the robustness, against decoherence, of the generated two-qubit correlations can be controlled by qubit–qubit coupling and the initial coherent cavity states.
Collapse
Affiliation(s)
- A.-B. A. Mohamed
- Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Aflaj 11942, Saudi Arabia;
- Faculty of Science, Assiut University, Assiut 71515, Egypt
- Correspondence:
| | - E. M. Khalil
- Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - M. F. Yassen
- Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Aflaj 11942, Saudi Arabia;
- Department of Mathematics, Faculty of Science, Damietta University, Damietta 34511, Egypt
| | - H. Eleuch
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Applied Sciences and Mathematics, College of Arts and Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|