1
|
Quan J, Cui S, Wang X. Cooperation dynamics in multi-issue repeated social dilemma games with correlated strategy. Phys Rev E 2024; 110:024307. [PMID: 39294945 DOI: 10.1103/physreve.110.024307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/23/2024] [Indexed: 09/21/2024]
Abstract
In the real world, individuals are often involved in collaboration on multiple issues, and these issues may interact with each other. Given the complexity of the interaction, we establish a multi-issue repeated game model, in which individuals participate in multiple social dilemma games simultaneously and repeatedly, and strategies in different issue games are correlated and reactive. We explore the cooperation dynamics of strategies in the population from a multiobjective perspective, in which an individual's preference for each issue is described by a weight vector, and heterogeneous preferences of individuals in the population are also considered. Through simulations on two-issue games, we find that compared to the uncorrelated case, the correlated strategy can significantly promote cooperation in both games regardless of which issue players prefer. Under the condition of homogeneous preference, an increase in the payoff weight of a given issue decreases the level of cooperation in that issue, and the optimal condition to sustain cooperation to the maximum extent is when the payoff weights of all issues are equal. Moreover, under the condition of heterogeneous preference, there exists an optimal proportion of players with different preferences under which the cooperation rate can reach its highest level in the population. This work highlights individual trade-offs on different issues when engaging in multiple games simultaneously and further enriches the research of evolutionary games from a multiobjective and correlated strategy perspective.
Collapse
|
2
|
Betz K, Fu F, Masuda N. Evolutionary Game Dynamics with Environmental Feedback in a Network with Two Communities. Bull Math Biol 2024; 86:84. [PMID: 38847946 PMCID: PMC11161456 DOI: 10.1007/s11538-024-01310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
Recent developments of eco-evolutionary models have shown that evolving feedbacks between behavioral strategies and the environment of game interactions, leading to changes in the underlying payoff matrix, can impact the underlying population dynamics in various manners. We propose and analyze an eco-evolutionary game dynamics model on a network with two communities such that players interact with other players in the same community and those in the opposite community at different rates. In our model, we consider two-person matrix games with pairwise interactions occurring on individual edges and assume that the environmental state depends on edges rather than on nodes or being globally shared in the population. We analytically determine the equilibria and their stability under a symmetric population structure assumption, and we also numerically study the replicator dynamics of the general model. The model shows rich dynamical behavior, such as multiple transcritical bifurcations, multistability, and anti-synchronous oscillations. Our work offers insights into understanding how the presence of community structure impacts the eco-evolutionary dynamics within and between niches.
Collapse
Affiliation(s)
- Katherine Betz
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, 14260-2900, USA
| | - Feng Fu
- Department of Mathematics, Dartmouth College, Hanover, NH, 03755, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03755, USA
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, 14260-2900, USA.
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, 14260-2900, USA.
- Center for Computational Social Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
3
|
Sohel Mondal S, Ray A, Chakraborty S. Hypochaos prevents tragedy of the commons in discrete-time eco-evolutionary game dynamics. CHAOS (WOODBURY, N.Y.) 2024; 34:023122. [PMID: 38377296 DOI: 10.1063/5.0190800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
While quite a few recent papers have explored game-resource feedback using the framework of evolutionary game theory, almost all the studies are confined to using time-continuous dynamical equations. Moreover, in such literature, the effect of ubiquitous chaos in the resulting eco-evolutionary dynamics is rather missing. Here, we present a deterministic eco-evolutionary discrete-time dynamics in generation-wise non-overlapping population of two types of harvesters-one harvesting at a faster rate than the other-consuming a self-renewing resource capable of showing chaotic dynamics. In the light of our finding that sometimes chaos is confined exclusively to either the dynamics of the resource or that of the consumer fractions, an interesting scenario is realized: The resource state can keep oscillating chaotically, and hence, it does not vanish to result in the tragedy of the commons-extinction of the resource due to selfish indiscriminate exploitation-and yet the consumer population, whose dynamics depends directly on the state of the resource, may end up being composed exclusively of defectors, i.e., high harvesters. This appears non-intuitive because it is well known that prevention of tragedy of the commons usually requires substantial cooperation to be present.
Collapse
Affiliation(s)
- Samrat Sohel Mondal
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Avishuman Ray
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Sagar Chakraborty
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
4
|
Salles LFP, de Aguiar MAM, Marquitti FMD. Evolution of cooperation in a two-species system with a common resource pool. J Theor Biol 2024; 577:111670. [PMID: 37981098 DOI: 10.1016/j.jtbi.2023.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Understanding the evolution of cooperation is a major question in Evolutionary Biology. Here, we extend a previously proposed mathematical model in Evolutionary Game Theory that investigated how resource use by a single species composed of cooperators and defectors may lead to its maintenance or extinction. We include another species in the model, so as to investigate how different intra and interspecific interactions of cooperative or competitive nature among individuals that share the same essential resource may drive the survival and evolution of the species. Several outcomes emerge from the model, depending on the configuration of the payoff matrix, the individual contribution to the resource pool, the competition intensity between species, and the initial conditions of the system dynamics. Observed results include scenarios in which species thrive due to the action of cooperators, but also scenarios in which both species collapse due to lack of cooperation and, consequently, of resources. In particular, a high initial availability of resources may be the determinant factor to the survival of both species. Interestingly, cooperation may be more favored when individuals have less incentive to cooperate with others, and the survival of their populations may depend crucially on their competitive capacities.
Collapse
Affiliation(s)
| | | | - Flavia Maria Darcie Marquitti
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Brazil; Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
5
|
Das Bairagya J, Chakraborty S. Hostility prevents the tragedy of the commons in metapopulation with asymmetric migration: A lesson from queenless ants. Phys Rev E 2023; 108:064401. [PMID: 38243478 DOI: 10.1103/physreve.108.064401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/08/2023] [Indexed: 01/21/2024]
Abstract
A colony of the queenless ant species, Pristomyrmex punctatus, can broadly be seen as consisting of small-body sized worker ants and relatively larger body-sized cheater ants. Hence, in the presence of intercolony migration, a set of constituent colonies act as a metapopulation exclusively composed of cooperators and defectors. Such a setup facilitates an evolutionary game-theoretic replication-selection model of population dynamics of the ants in a metapopulation. Using the model, we analytically probe the effects of territoriality induced hostility. Such hostility in the ant metapopulation proves to be crucial in preventing the tragedy of the commons, specifically, the workforce, a social good formed by cooperation. This mechanism applies to any metapopulation-not necessarily the ants-composed of cooperators and defectors where interpopulation migration occurs asymmetrically, i.e., cooperators and defectors migrate at different rates. Furthermore, our model validates that there is evolutionary benefit behind the queenless ants' behavior of showing more hostility towards the immigrants from nearby colonies than those from the far-off ones. In order to calibrate our model's parameters, we have extensively used the data available on the queenless ant species, P. punctatus.
Collapse
Affiliation(s)
- Joy Das Bairagya
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sagar Chakraborty
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
6
|
Salahshour M. Interaction between games give rise to the evolution of moral norms of cooperation. PLoS Comput Biol 2022; 18:e1010429. [PMID: 36173936 PMCID: PMC9521931 DOI: 10.1371/journal.pcbi.1010429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
In many biological populations, such as human groups, individuals face a complex strategic setting, where they need to make strategic decisions over a diverse set of issues and their behavior in one strategic context can affect their decisions in another. This raises the question of how the interaction between different strategic contexts affects individuals’ strategic choices and social norms? To address this question, I introduce a framework where individuals play two games with different structures and decide upon their strategy in a second game based on their knowledge of their opponent’s strategy in the first game. I consider both multistage games, where the same opponents play the two games consecutively, and reputation-based model, where individuals play their two games with different opponents but receive information about their opponent’s strategy. By considering a case where the first game is a social dilemma, I show that when the second game is a coordination or anti-coordination game, the Nash equilibrium of the coupled game can be decomposed into two classes, a defective equilibrium which is composed of two simple equilibrium of the two games, and a cooperative equilibrium, in which coupling between the two games emerge and sustain cooperation in the social dilemma. For the existence of the cooperative equilibrium, the cost of cooperation should be smaller than a value determined by the structure of the second game. Investigation of the evolutionary dynamics shows that a cooperative fixed point exists when the second game belongs to coordination or anti-coordination class in a mixed population. However, the basin of attraction of the cooperative fixed point is much smaller for the coordination class, and this fixed point disappears in a structured population. When the second game belongs to the anti-coordination class, the system possesses a spontaneous symmetry-breaking phase transition above which the symmetry between cooperation and defection breaks. A set of cooperation supporting moral norms emerges according to which cooperation stands out as a valuable trait. Notably, the moral system also brings a more efficient allocation of resources in the second game. This observation suggests a moral system has two different roles: Promotion of cooperation, which is against individuals’ self-interest but beneficial for the population, and promotion of organization and order, which is at both the population’s and the individual’s self-interest. Interestingly, the latter acts like a Trojan horse: Once established out of individuals’ self-interest, it brings the former with itself. Importantly, the fact that the evolution of moral norms depends only on the cost of cooperation and is independent of the benefit of cooperation implies that moral norms can be harmful and incur a pure collective cost, yet they are just as effective in promoting order and organization. Finally, the model predicts that recognition noise can have a surprisingly positive effect on the evolution of moral norms and facilitates cooperation in the Snow Drift game in structured populations. How do moral norms spontaneously evolve in the presence of selfish incentives? An answer to this question is provided by the observation that moral systems have two distinct functions: Besides encouraging self-sacrificing cooperation, they also bring organization and order into the societies. In contrast to the former, which is costly for the individuals but beneficial for the group, the latter is beneficial for both the group and the individuals. A simple evolutionary model suggests this latter aspect is what makes a moral system evolve based on the individuals’ self-interest. However, a moral system behaves like a Trojan horse: Once established out of the individuals’ self-interest to promote order and organization, it also brings self-sacrificing cooperation.
Collapse
Affiliation(s)
- Mohammad Salahshour
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- * E-mail:
| |
Collapse
|
7
|
Farahbakhsh I, Bauch CT, Anand M. Modelling coupled human-environment complexity for the future of the biosphere: strengths, gaps and promising directions. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210382. [PMID: 35757879 PMCID: PMC9234813 DOI: 10.1098/rstb.2021.0382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 01/15/2023] Open
Abstract
Humans and the environment form a single complex system where humans not only influence ecosystems but also react to them. Despite this, there are far fewer coupled human-environment system (CHES) mathematical models than models of uncoupled ecosystems. We argue that these coupled models are essential to understand the impacts of social interventions and their potential to avoid catastrophic environmental events and support sustainable trajectories on multi-decadal timescales. A brief history of CHES modelling is presented, followed by a review spanning recent CHES models of systems including forests and land use, coral reefs and fishing and climate change mitigation. The ability of CHES modelling to capture dynamic two-way feedback confers advantages, such as the ability to represent ecosystem dynamics more realistically at longer timescales, and allowing insights that cannot be generated using ecological models. We discuss examples of such key insights from recent research. However, this strength brings with it challenges of model complexity and tractability, and the need for appropriate data to parameterize and validate CHES models. Finally, we suggest opportunities for CHES models to improve human-environment sustainability in future research spanning topics such as natural disturbances, social structure, social media data, model discovery and early warning signals. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
| | - Chris T. Bauch
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| | - Madhur Anand
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
8
|
Das Bairagya J, Mondal SS, Chowdhury D, Chakraborty S. Game-environment feedback dynamics in growing population: Effect of finite carrying capacity. Phys Rev E 2021; 104:044407. [PMID: 34781515 DOI: 10.1103/physreve.104.044407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 11/07/2022]
Abstract
The tragedy of the commons (TOC) is an unfortunate situation where a shared resource is exhausted due to uncontrolled exploitation by the selfish individuals of a population. Recently, the paradigmatic replicator equation has been used in conjunction with a phenomenological equation for the state of the shared resource to gain insight into the influence of the games on the TOC. The replicator equation, by construction, models a fixed infinite population undergoing microevolution. Thus, it is unable to capture any effect of the population growth and the carrying capacity of the population although the TOC is expected to be dependent on the size of the population. Therefore, in this paper, we present a mathematical framework that incorporates the density dependent payoffs and the logistic growth of the population in the eco-evolutionary dynamics modeling the game-resource feedback. We discover a bistability in the dynamics: a finite carrying capacity can either avert or cause the TOC depending on the initial states of the resource and the initial fraction of cooperators. In fact, depending on the type of strategic game-theoretic interaction, a finite carrying capacity can either avert or cause the TOC when it is exactly the opposite for the corresponding case with infinite carrying capacity.
Collapse
Affiliation(s)
- Joy Das Bairagya
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | | | - Sagar Chakraborty
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
9
|
Arefin MR, Tanimoto J. Imitation and aspiration dynamics bring different evolutionary outcomes in feedback-evolving games. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Feedback-evolving games characterize the interplay between the evolution of strategies and environments. Rich dynamics have been derived for such games under the premise of the replicator equation, which unveils persistent oscillations between cooperation and defection. Besides replicator dynamics, here we have employed aspiration dynamics, in which individuals, instead of comparing payoffs with opposite strategies, assess their payoffs by self-evaluation to update strategies. We start with a brief review of feedback-evolving games with replicator dynamics and then comprehensively discuss such games with aspiration dynamics. Interestingly, the tenacious cycles, as perceived in replicator dynamics, cannot be observed in aspiration dynamics. Our analysis reveals that a parameter
θ
—which depicts the strength of cooperation in enhancing the environment—plays a pivotal role in comprehending the dynamics. In particular, with the symmetric aspiration level, if replete and depleted states, respectively, experience Prisoner's Dilemma and Trivial games, the rich environment is achievable only when
θ
> 1. The case
θ
< 1 never allows us to reach the replete state, even with a higher cooperation level. Furthermore, if cooperators aspire less than defectors, then the enhanced state can be achieved with a relatively lower
θ
value compared with the opposite scenario because too much expectation from cooperation can be less beneficial.
Collapse
Affiliation(s)
- Md. Rajib Arefin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jun Tanimoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
- Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
10
|
Muratore D, Weitz JS. Infect while the iron is scarce: nutrient-explicit phage-bacteria games. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00508-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Mukhopadhyay A, Chakraborty S. Replicator equations induced by microscopic processes in nonoverlapping population playing bimatrix games. CHAOS (WOODBURY, N.Y.) 2021; 31:023123. [PMID: 33653037 DOI: 10.1063/5.0032311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
This paper is concerned with exploring the microscopic basis for the discrete versions of the standard replicator equation and the adjusted replicator equation. To this end, we introduce frequency-dependent selection-as a result of competition fashioned by game-theoretic consideration-into the Wright-Fisher process, a stochastic birth-death process. The process is further considered to be active in a generation-wise nonoverlapping finite population where individuals play a two-strategy bimatrix population game. Subsequently, connections among the corresponding master equation, the Fokker-Planck equation, and the Langevin equation are exploited to arrive at the deterministic discrete replicator maps in the limit of infinite population size.
Collapse
Affiliation(s)
- Archan Mukhopadhyay
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sagar Chakraborty
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
12
|
Abstract
Strategic interactions arise in all domains of life. This form of competition often plays out in dynamically changing environments. The strategies employed in a population may alter the state of the environment, which may in turn feedback to change the incentive structure of strategic interactions. Feedbacks between strategies and the environment are common in social-ecological systems, evolutionary-ecological systems, and even psychological-economic systems. Here we develop a framework of 'eco-evolutionary game theory' that enables the study of strategic and environmental dynamics with feedbacks. We consider environments governed either by intrinsic growth, decay, or tipping points. We show how the joint dynamics of strategies and the environment depend on the incentives for individuals to lead or follow behavioral changes, and on the relative speed of environmental versus strategic change. Our analysis unites dynamical phenomena that occur in settings as diverse as human decision-making, plant nutrient acquisition, and resource harvesting. We discuss implications in fields ranging from ecology to economics.
Collapse
|
13
|
Schuhmann RB. Editorial: Avoid the Tragedy of the Commons. PHYSICAL REVIEW LETTERS 2019; 122:230001. [PMID: 31298887 DOI: 10.1103/physrevlett.122.230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|