1
|
Sun T, Zhao Q, Wan F, Salamin YI, Li JX. Generation of Ultrabrilliant Polarized Attosecond Electron Bunches via Dual-Wake Injection. PHYSICAL REVIEW LETTERS 2024; 132:045001. [PMID: 38335335 DOI: 10.1103/physrevlett.132.045001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Laser wakefield acceleration is paving the way for the next generation of electron accelerators, for their own sake and as radiation sources. A controllable dual-wake injection scheme is put forward here to generate an ultrashort triplet electron bunch with high brightness and high polarization, employing a radially polarized laser as a driver. We find that the dual wakes can be driven by both transverse and longitudinal components of the laser field in the quasiblowout regime, sustaining the laser-modulated wakefield which facilitates the subcycle and transversely split injection of the triplet bunch. Polarization of the triplet bunch can be highly preserved due to the laser-assisted collective spin precession and the noncanceled transverse spins. In our three-dimensional particle-in-cell simulations, the triplet electron bunch, with duration about 500 as, six-dimensional brightness exceeding 10^{14} A/m^{2}/0.1% and polarization over 80%, can be generated using a few-terawatt laser. Such an electron bunch could play an essential role in many applications, such as ultrafast imaging, nuclear structure and high-energy physics studies, and the operation of coherent radiation sources.
Collapse
Affiliation(s)
- Ting Sun
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhao
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Wan
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yousef I Salamin
- Department of Physics, American University of Sharjah, Sharjah, POB 26666 Sharjah, United Arab Emirates
| | - Jian-Xing Li
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(7), Beijing 102413, China
| |
Collapse
|
2
|
Xue K, Guo RT, Wan F, Shaisultanov R, Chen YY, Xu ZF, Ren XG, Hatsagortsyan KZ, Keitel CH, Li JX. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
3
|
Li XF, Gibbon P, Hützen A, Büscher M, Weng SM, Chen M, Sheng ZM. Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas. Phys Rev E 2021; 104:015216. [PMID: 34412274 DOI: 10.1103/physreve.104.015216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/08/2021] [Indexed: 11/07/2022]
Abstract
The production of polarized proton beams with multi-GeV energies in ultraintense laser interaction with targets is studied with three-dimensional particle-in-cell simulations. A near-critical density plasma target with prepolarized proton and tritium ions is considered for the proton acceleration. The prepolarized protons are initially accelerated by laser radiation pressure before injection and further acceleration in a bubblelike wakefield. The temporal dynamics of proton polarization is tracked via the Thomas-Bargmann-Michel-Telegdi equation and it is found that the proton polarization state can be altered by both the laser field and the magnetic component of the wakefield. The dependence of the proton acceleration and polarization on the ratio of the ion species is determined and it is found that the protons can be efficiently accelerated as long as their relative fraction is less than 20%, in which case the bubble size is large enough for the protons to obtain sufficient energy to overcome the bubble injection threshold.
Collapse
Affiliation(s)
- X F Li
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany.,Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - P Gibbon
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany.,Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - A Hützen
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - M Büscher
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - S M Weng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - M Chen
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Z M Sheng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.,SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom.,Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Spiliotis AK, Xygkis M, Koutrakis ME, Tazes K, Boulogiannis GK, Kannis CS, Katsoprinakis GE, Sofikitis D, Rakitzis TP. Ultrahigh-density spin-polarized hydrogen isotopes from the photodissociation of hydrogen halides: new applications for laser-ion acceleration, magnetometry, and polarized nuclear fusion. LIGHT, SCIENCE & APPLICATIONS 2021; 10:35. [PMID: 33579898 PMCID: PMC7881141 DOI: 10.1038/s41377-021-00476-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Recently, our group produced spin-polarized hydrogen (SPH) atoms at densities of at least 1019 cm-3 from the photodissociation of hydrogen halide molecules with circularly polarized UV light and measured them via magnetization-quantum beats with a pickup coil. These densities are approximately 7 orders of magnitude higher than those produced using conventional methods, opening up new fields of application, such as ultrafast magnetometry, the production of polarized MeV and GeV particle beams, such as electron beams with intensities approximately 104 higher than current sources, and the study of polarized nuclear fusion, for which the reaction cross sections of D-T and D-3He reactions are expected to increase by 50% for fully polarized nuclear spins. We review the production, detection, depolarization mechanisms, and potential applications of high-density SPH.
Collapse
Affiliation(s)
- Alexandros K Spiliotis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete, GR-71110, Greece
- University of Crete, Department of Physics, Herakleio, Greece
| | - Michalis Xygkis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete, GR-71110, Greece
- University of Crete, Department of Physics, Herakleio, Greece
| | - Michail E Koutrakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete, GR-71110, Greece
- University of Crete, Department of Physics, Herakleio, Greece
| | - Konstantinos Tazes
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete, GR-71110, Greece
- University of Crete, Department of Physics, Herakleio, Greece
| | - Gregoris K Boulogiannis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete, GR-71110, Greece
- University of Crete, Department of Physics, Herakleio, Greece
| | - Chrysovalantis S Kannis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete, GR-71110, Greece
- University of Crete, Department of Physics, Herakleio, Greece
| | - Georgios E Katsoprinakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete, GR-71110, Greece
- University of Crete, Department of Physics, Herakleio, Greece
| | - Dimitrios Sofikitis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete, GR-71110, Greece
- University of Crete, Department of Physics, Herakleio, Greece
- Department of Physics, Atomic and Molecular Physics Laboratory, University of Ioannina, University Campus, Ioannina, GR-45110, Greece
| | - T Peter Rakitzis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete, GR-71110, Greece.
- University of Crete, Department of Physics, Herakleio, Greece.
| |
Collapse
|
5
|
Nie Z, Li F, Morales F, Patchkovskii S, Smirnova O, An W, Nambu N, Matteo D, Marsh KA, Tsung F, Mori WB, Joshi C. In Situ Generation of High-Energy Spin-Polarized Electrons in a Beam-Driven Plasma Wakefield Accelerator. PHYSICAL REVIEW LETTERS 2021; 126:054801. [PMID: 33605740 DOI: 10.1103/physrevlett.126.054801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In situ generation of a high-energy, high-current, spin-polarized electron beam is an outstanding scientific challenge to the development of plasma-based accelerators for high-energy colliders. In this Letter, we show how such a spin-polarized relativistic beam can be produced by ionization injection of electrons of certain atoms with a circularly polarized laser field into a beam-driven plasma wakefield accelerator, providing a much desired one-step solution to this challenge. Using time-dependent Schrödinger equation (TDSE) simulations, we show the propensity rule of spin-dependent ionization of xenon atoms can be reversed in the strong-field multiphoton regime compared with the non-adiabatic tunneling regime, leading to high total spin polarization. Furthermore, three-dimensional particle-in-cell simulations are incorporated with TDSE simulations, providing start-to-end simulations of spin-dependent strong-field ionization of xenon atoms and subsequent trapping, acceleration, and preservation of electron spin polarization in lithium plasma. We show the generation of a high-current (0.8 kA), ultralow-normalized-emittance (∼37 nm), and high-energy (2.7 GeV) electron beam within just 11 cm distance, with up to ∼31% net spin polarization. Higher current, energy, and net spin-polarization beams are possible by optimizing this concept, thus solving a long-standing problem facing the development of plasma accelerators.
Collapse
Affiliation(s)
- Zan Nie
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Fei Li
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Felipe Morales
- Max Born Institute, Max-Born-Strasse 2A, D-12489 Berlin, Germany
| | | | - Olga Smirnova
- Max Born Institute, Max-Born-Strasse 2A, D-12489 Berlin, Germany
| | - Weiming An
- Department of Astronomy, Beijing Normal University, Beijing 100875, China
| | - Noa Nambu
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Daniel Matteo
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kenneth A Marsh
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Frank Tsung
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Warren B Mori
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chan Joshi
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Cheng QY, Song YZ, Meng QT. Field-free alignment of triatomic molecules controlled by a slow turn-on and rapid turn-off shaped laser pulse. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1859147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Qi-Yuan Cheng
- Medical Engineering Department, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
- Shandong Laibo Biotechnology Co., Ltd., Jinan, People’s Republic of China
- School of Control Science and Engineering, Shandong University, Jinan, People’s Republic of China
| | - Yu-Zhi Song
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Qing-Tian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Gong Z, Shou Y, Tang Y, Yan X. Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma. Phys Rev E 2020; 102:053212. [PMID: 33327078 DOI: 10.1103/physreve.102.053212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/27/2020] [Indexed: 11/07/2022]
Abstract
We propose a scheme to overcome the great challenge of polarization loss in spin-polarized ion acceleration. When a petawatt laser pulse penetrates through a compound plasma target consisting of a double layer slab and prepolarized hydrogen halide gas, a strong forward moving quasistatic longitudinal electric field is constructed by the self-generated laser-driven plasma. This field with a varying drift velocity efficiently boosts the prepolarized protons via a two-stage coherent acceleration process. Its merit is not only achieving a highly energetic beam but also eliminating the undesired polarization loss of the accelerated protons. We study the proton dynamics via Hamiltonian analyses, specifically deriving the threshold of triggering the two-stage coherent acceleration. To confirm the theoretical predictions, we perform three-dimensional PIC simulations, where unprecedented proton beams with energy approximating half GeV and polarization ratio ∼ 94% are obtained.
Collapse
Affiliation(s)
- Zheng Gong
- SKLNPT, KLHEDP, CAPT, and School of Physics, Peking University, Beijing 100871, China
| | - Yinren Shou
- SKLNPT, KLHEDP, CAPT, and School of Physics, Peking University, Beijing 100871, China
| | - Yuhui Tang
- SKLNPT, KLHEDP, CAPT, and School of Physics, Peking University, Beijing 100871, China
| | - Xueqing Yan
- SKLNPT, KLHEDP, CAPT, and School of Physics, Peking University, Beijing 100871, China.,CICEO, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
8
|
Jin L, Wen M, Zhang X, Hützen A, Thomas J, Büscher M, Shen B. Spin-polarized proton beam generation from gas-jet targets by intense laser pulses. Phys Rev E 2020; 102:011201. [PMID: 32795078 DOI: 10.1103/physreve.102.011201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/27/2020] [Indexed: 11/07/2022]
Abstract
A method of generating spin-polarized proton beams from a gas jet by using a multipetawatt laser is put forward. With currently available techniques of producing prepolarized monatomic gases from photodissociated hydrogen halide molecules and petawatt lasers, proton beams with energy ≳50 MeV and ≈80% polarization are proved to be obtained. Two-stage acceleration and spin dynamics of protons are investigated theoretically and by means of fully self-consistent three-dimensional particle-in-cell simulations. Our results predict the dependence of the beam polarization on the intensity of the driving laser pulse. Generation of bright energetic polarized proton beams would open a domain of polarization studies with laser driven accelerators and have potential application to enable effective detection in explorations of quantum chromodynamics.
Collapse
Affiliation(s)
- Luling Jin
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Meng Wen
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Xiaomei Zhang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Anna Hützen
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Johannes Thomas
- Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Markus Büscher
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Baifei Shen
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,Department of Physics, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
9
|
Li YF, Chen YY, Wang WM, Hu HS. Production of Highly Polarized Positron Beams via Helicity Transfer from Polarized Electrons in a Strong Laser Field. PHYSICAL REVIEW LETTERS 2020; 125:044802. [PMID: 32794799 DOI: 10.1103/physrevlett.125.044802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/17/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The production of a highly polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated theoretically. A new Monte Carlo method employing fully spin-resolved quantum probabilities is developed under the local constant field approximation to include three-dimensional polarization effects in strong laser fields. The produced positrons are longitudinally polarized through polarization transferred from the polarized electrons by the medium of high-energy photons. The polarization transfer efficiency can approach 100% for the energetic positrons moving at smaller deflection angles. This method simplifies the postselection procedure to generate high-quality positron beams in further applications. In a feasible scenario, a highly polarized (40%-65%), intense (10^{5}-10^{6}/bunch), collimated (5-70 mrad) positron beam can be obtained in a femtosecond timescale. The longitudinally polarized positron sources are desirable for applications in high-energy physics and material science.
Collapse
Affiliation(s)
- Yan-Fei Li
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue-Yue Chen
- Department of Physics, Shanghai Normal University, Shanghai 200234, China
| | - Wei-Min Wang
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Si Hu
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Li YF, Shaisultanov R, Chen YY, Wan F, Hatsagortsyan KZ, Keitel CH, Li JX. Polarized Ultrashort Brilliant Multi-GeV γ Rays via Single-Shot Laser-Electron Interaction. PHYSICAL REVIEW LETTERS 2020; 124:014801. [PMID: 31976698 DOI: 10.1103/physrevlett.124.014801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Generation of circularly polarized (CP) and linearly polarized (LP) γ rays via the single-shot interaction of an ultraintense laser pulse with a spin-polarized counterpropagating ultrarelativistic electron beam has been investigated in nonlinear Compton scattering in the quantum radiation-dominated regime. For the process simulation, a Monte Carlo method is developed which employs the electron-spin-resolved probabilities for polarized photon emissions. We show efficient ways for the transfer of the electron polarization to the high-energy photon polarization. In particular, multi-GeV CP (LP) γ rays with polarization of up to about 95% can be generated by a longitudinally (transversely) spin-polarized electron beam, with a photon flux meeting the requirements of recent proposals for the vacuum birefringence measurement in ultrastrong laser fields. Such high-energy, high-brilliance, high-polarization γ rays are also beneficial for other applications in high-energy physics, and laboratory astrophysics.
Collapse
Affiliation(s)
- Yan-Fei Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Rashid Shaisultanov
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Yue-Yue Chen
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Feng Wan
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Jian-Xing Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Wu Y, Ji L, Geng X, Yu Q, Wang N, Feng B, Guo Z, Wang W, Qin C, Yan X, Zhang L, Thomas J, Hützen A, Pukhov A, Büscher M, Shen B, Li R. Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection. Phys Rev E 2019; 100:043202. [PMID: 31770946 DOI: 10.1103/physreve.100.043202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 11/07/2022]
Abstract
We investigate the precession of electron spins during beam-driven plasma-wakefield acceleration based on density down-ramp injection by means of full three-dimensional (3D) particle-in-cell (PIC) simulations. A relativistic electron beam generated via, e.g., laser wakefield acceleration, serves as the driving source. It traverses the prepolarized gas target and accelerates polarized electrons via the excited wakefield. We derive the criteria for the driving beam parameters and the limitation on the injected beam flux to preserve a high degree of polarization for the accelerated electrons, which are confirmed by our 3D PIC simulations and single-particle modeling. The electron-beam driver is free of the prepulse issue associated with a laser driver, thus eliminating possible depolarization of the prepolarized gas due to ionization by the prepulse. These results provide guidance for future experiments towards generating a source of polarized electrons based on wakefield acceleration.
Collapse
Affiliation(s)
- Yitong Wu
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangliang Ji
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Xuesong Geng
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qin Yu
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Nengwen Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Bo Feng
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhao Guo
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Weiqing Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chengyu Qin
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xue Yan
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lingang Zhang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Johannes Thomas
- Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Anna Hützen
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Pukhov
- Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Büscher
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Baifei Shen
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China.,Shanghai Normal University, Shanghai 200234, China
| | - Ruxin Li
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China.,Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
12
|
Boulogiannis GK, Kannis CS, Katsoprinakis GE, Sofikitis D, Rakitzis TP. Spin-Polarized Hydrogen Depolarization Rates at High Hydrogen Halide Pressures: Hyperfine Depolarization via the HY-H Complex. J Phys Chem A 2019; 123:8130-8134. [PMID: 31483657 DOI: 10.1021/acs.jpca.9b06372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We measure the magnetization quantum beats of spin-polarized hydrogen (SPH) and spin-polarized deuterium (SPD) with a pickup coil, from the UV photodissociation of HCl, HBr, and DI, in the 5-5000 mbar pressure range. The pressure-dependent depolarization rate is linear at low pressures and reaches a plateau at higher pressures. The high-pressure depolarization rate is observed to be proportional to the halogen nuclear electric quadrupole coupling constant. We also investigate how the presence of an inert gas, SF6 or N2, affects the depolarization rate. The results are explained using a model in which depolarization occurs predominantly through an HY-H intermediate species (Y = Cl, Br, I).
Collapse
Affiliation(s)
- Gregoris K Boulogiannis
- Department of Physics , University of Crete , Herakleio , Greece.,Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , 71110 Heraklion-Crete , Greece
| | - Chrysovalantis S Kannis
- Department of Physics , University of Crete , Herakleio , Greece.,Institut für Kernphysik (IKP-4) , Forschungszentrum Jülich , Wilhelm-Johnen-Strasse 1 , 52425 Jülich , Germany.,Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , 71110 Heraklion-Crete , Greece
| | - Georgios E Katsoprinakis
- Department of Physics , University of Crete , Herakleio , Greece.,Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , 71110 Heraklion-Crete , Greece
| | - Dimitris Sofikitis
- Department of Physics , University of Crete , Herakleio , Greece.,Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , 71110 Heraklion-Crete , Greece
| | - T Peter Rakitzis
- Department of Physics , University of Crete , Herakleio , Greece.,Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , 71110 Heraklion-Crete , Greece
| |
Collapse
|