1
|
Heiße F, Door M, Sailer T, Filianin P, Herkenhoff J, König CM, Kromer K, Lange D, Morgner J, Rischka A, Schweiger C, Tu B, Novikov YN, Eliseev S, Sturm S, Blaum K. High-Precision Determination of g Factors and Masses of ^{20}Ne^{9+} and ^{22}Ne^{9+}. PHYSICAL REVIEW LETTERS 2023; 131:253002. [PMID: 38181339 DOI: 10.1103/physrevlett.131.253002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 01/07/2024]
Abstract
We present the measurements of individual bound electron g factors of ^{20}Ne^{9+} and ^{22}Ne^{9+} on the relative level of 0.1 parts per billion. The comparison with theory represents the most stringent test of bound-state QED in strong electric fields. A dedicated mass measurement results in m(^{20}Ne)=19.992 440 168 77(9) u, which improves the current literature value by a factor of 18, disagrees by 4 standard deviations, and represents the most precisely measured mass value in atomic mass units. Together, these measurements yield an electron mass on the relative level of 0.1 ppb with m_{e}=5.485 799 090 99(59)×10^{-4} u as well as a factor of seven improved m(^{22}Ne)=21.991 385 098 2(26) u.
Collapse
Affiliation(s)
- F Heiße
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - M Door
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - T Sailer
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - P Filianin
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - J Herkenhoff
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - C M König
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - K Kromer
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - D Lange
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - J Morgner
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - A Rischka
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Ch Schweiger
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - B Tu
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Y N Novikov
- Kurchatov Institute-PNPI, 188300 Gatchina, Russia
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - S Eliseev
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - S Sturm
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| |
Collapse
|
2
|
Morgner J, Tu B, König CM, Sailer T, Heiße F, Bekker H, Sikora B, Lyu C, Yerokhin VA, Harman Z, Crespo López-Urrutia JR, Keitel CH, Sturm S, Blaum K. Stringent test of QED with hydrogen-like tin. Nature 2023; 622:53-57. [PMID: 37794267 PMCID: PMC10550826 DOI: 10.1038/s41586-023-06453-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/19/2023] [Indexed: 10/06/2023]
Abstract
Inner-shell electrons naturally sense the electric field close to the nucleus, which can reach extreme values beyond 1015 V cm-1 for the innermost electrons1. Especially in few-electron, highly charged ions, the interaction with the electromagnetic fields can be accurately calculated within quantum electrodynamics (QED), rendering these ions good candidates to test the validity of QED in strong fields. Consequently, their Lamb shifts were intensively studied in the past several decades2,3. Another approach is the measurement of gyromagnetic factors (g factors) in highly charged ions4-7. However, so far, either experimental accuracy or small field strength in low-Z ions5,6 limited the stringency of these QED tests. Here we report on our high-precision, high-field test of QED in hydrogen-like 118Sn49+. The highly charged ions were produced with the Heidelberg electron beam ion trap (EBIT)8 and injected into the ALPHATRAP Penning-trap setup9, in which the bound-electron g factor was measured with a precision of 0.5 parts per billion (ppb). For comparison, we present state-of-the-art theory calculations, which together test the underlying QED to about 0.012%, yielding a stringent test in the strong-field regime. With this measurement, we challenge the best tests by means of the Lamb shift and, with anticipated advances in the g-factor theory, surpass them by more than an order of magnitude.
Collapse
Affiliation(s)
- J Morgner
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
| | - B Tu
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - C M König
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - T Sailer
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - F Heiße
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - H Bekker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz, Germany
| | - B Sikora
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - C Lyu
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - V A Yerokhin
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Z Harman
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | | | - C H Keitel
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - S Sturm
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| |
Collapse
|
3
|
Commissioning of the HITRAP Cooling Trap with Offline Ions. ATOMS 2022. [DOI: 10.3390/atoms10040142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Highly charged heavy ions at rest offer a wide spectrum of precision measurements. The GSI Helmholtzzentrum für Schwerionenforschung GmbH is able to deliver ions up to U92+. As the production of these heavy, highly charged ions requires high kinetic energies, it is necessary to decelerate these ions for ultimate precision. The broad energy distribution, which results from the deceleration in the HITRAP linear decelerator, needs to be reduced to allow for further transportation and experiments. The HITRAP cooling trap is designed to cool, i.e., reduce, this energy spread by utilizing electron cooling. The commissioning of this trap is done with Ar16+-ions from a local EBIT ion source. By analyzing the signal of stored ions after ejection, properties such as ion lifetime, charge exchange, and ion motions can be observed. Here, we provide an overview of the recent results of the commissioning process and discuss future experiments.
Collapse
|
4
|
King SA, Spieß LJ, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin VA, Crespo López-Urrutia JR, Schmidt PO. An optical atomic clock based on a highly charged ion. Nature 2022; 611:43-47. [DOI: 10.1038/s41586-022-05245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
|
5
|
Sailer T, Debierre V, Harman Z, Heiße F, König C, Morgner J, Tu B, Volotka AV, Keitel CH, Blaum K, Sturm S. Measurement of the bound-electron g-factor difference in coupled ions. Nature 2022; 606:479-483. [PMID: 35705820 PMCID: PMC9200642 DOI: 10.1038/s41586-022-04807-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022]
Abstract
Quantum electrodynamics (QED) is one of the most fundamental theories of physics and has been shown to be in excellent agreement with experimental results1-5. In particular, measurements of the electron's magnetic moment (or g factor) of highly charged ions in Penning traps provide a stringent probe for QED, which allows testing of the standard model in the strongest electromagnetic fields6. When studying the differences between isotopes, many common QED contributions cancel owing to the identical electron configuration, making it possible to resolve the intricate effects stemming from the nuclear differences. Experimentally, however, this quickly becomes limited, particularly by the precision of the ion masses or the magnetic field stability7. Here we report on a measurement technique that overcomes these limitations by co-trapping two highly charged ions and measuring the difference in their g factors directly. We apply a dual Ramsey-type measurement scheme with the ions locked on a common magnetron orbit8, separated by only a few hundred micrometres, to coherently extract the spin precession frequency difference. We have measured the isotopic shift of the bound-electron g factor of the isotopes 20Ne9+ and 22Ne9+ to 0.56-parts-per-trillion (5.6 × 10-13) precision relative to their g factors, an improvement of about two orders of magnitude compared with state-of-the-art techniques7. This resolves the QED contribution to the nuclear recoil, accurately validates the corresponding theory and offers an alternative approach to set constraints on new physics.
Collapse
Affiliation(s)
- Tim Sailer
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
| | | | - Zoltán Harman
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Fabian Heiße
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | | | | | - Bingsheng Tu
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Andrey V Volotka
- Department of Physics and Engineering, ITMO University, St Petersburg, Russia
- Helmholtz-Institut Jena, Jena, Germany
| | | | - Klaus Blaum
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Sven Sturm
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| |
Collapse
|
6
|
Kosheleva VP, Volotka AV, Glazov DA, Zinenko DV, Fritzsche S. g Factor of Lithiumlike Silicon and Calcium: Resolving the Disagreement between Theory and Experiment. PHYSICAL REVIEW LETTERS 2022; 128:103001. [PMID: 35333066 DOI: 10.1103/physrevlett.128.103001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The bound-electron g factor is a stringent tool for tests of the standard model and the search for new physics. The comparison between an experiment on the g factor of lithiumlike silicon and the two recent theoretical values revealed the discrepancies of 1.7σ [Glazov et al. Phys. Rev. Lett. 123, 173001 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.173001] and 5.2σ [Yerokhin et al. Phys. Rev. A 102, 022815 (2020)PLRAAN2469-992610.1103/PhysRevA.102.022815]. To identify the reason for this disagreement, we accomplish large-scale high-precision computation of the interelectronic-interaction and many-electron QED corrections. The calculations are performed within the extended Furry picture of QED, and the dependence of the final values on the choice of the binding potential is carefully analyzed. As a result, we significantly improve the agreement between the theory and experiment for the g factor of lithiumlike silicon. We also report the most accurate theoretical prediction to date for lithiumlike calcium, which perfectly agrees with the experimental value.
Collapse
Affiliation(s)
- V P Kosheleva
- Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - A V Volotka
- School of Physics and Engineering, ITMO University, Kronverkskiy 49, 197101 St. Petersburg, Russia
| | - D A Glazov
- Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
| | - D V Zinenko
- Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
| | - S Fritzsche
- Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| |
Collapse
|
7
|
Herkenhoff J, Door M, Filianin P, Huang W, Kromer K, Lange D, Schüssler RX, Schweiger C, Eliseev S, Blaum K. A digital feedback system for advanced ion manipulation techniques in Penning traps. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:103201. [PMID: 34717400 DOI: 10.1063/5.0064369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The possibility of applying active feedback to a single ion in a Penning trap using a fully digital system is demonstrated. Previously realized feedback systems rely on analog circuits that are susceptible to environmental fluctuations and long term drifts, as well as being limited to the specific task they were designed for. The presented system is implemented using a field-programmable gate array (FPGA)-based platform (STEMlab), offering greater flexibility, higher temporal stability, and the possibility for highly dynamic variation of feedback parameters. The system's capabilities were demonstrated by applying feedback to the ion detection system primarily consisting of a resonant circuit. This allowed shifts in its resonance frequency of up to several kHz and free modification of its quality factor within two orders of magnitude, which reduces the temperature of a single ion by a factor of 6. Furthermore, a phase-sensitive detection technique for the axial ion oscillation was implemented, which reduces the current measurement time by two orders of magnitude, while simultaneously eliminating model-related systematic uncertainties. The use of FPGA technology allowed the implementation of a fully-featured data acquisition system, making it possible to realize feedback techniques that require constant monitoring of the ion signal. This was successfully used to implement a single-ion self-excited oscillator.
Collapse
Affiliation(s)
- Jost Herkenhoff
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Menno Door
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Pavel Filianin
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Wenjia Huang
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Kathrin Kromer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Daniel Lange
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Rima X Schüssler
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Christoph Schweiger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Sergey Eliseev
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Klaus Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| |
Collapse
|
8
|
Micke P, Leopold T, King SA, Benkler E, Spieß LJ, Schmöger L, Schwarz M, Crespo López-Urrutia JR, Schmidt PO. Coherent laser spectroscopy of highly charged ions using quantum logic. Nature 2020; 578:60-65. [DOI: 10.1038/s41586-020-1959-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/25/2019] [Indexed: 11/09/2022]
|
9
|
Glazov DA, Köhler-Langes F, Volotka AV, Blaum K, Heiße F, Plunien G, Quint W, Rau S, Shabaev VM, Sturm S, Werth G. g Factor of Lithiumlike Silicon: New Challenge to Bound-State QED. PHYSICAL REVIEW LETTERS 2019; 123:173001. [PMID: 31702246 DOI: 10.1103/physrevlett.123.173001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
The recently established agreement between experiment and theory for the g factors of lithiumlike silicon and calcium ions manifests the most stringent test of the many-electron bound-state quantum electrodynamics (QED) effects in the presence of a magnetic field. In this Letter, we present a significant simultaneous improvement of both theoretical g_{th}=2.000 889 894 4 (34) and experimental g_{exp}=2.000 889 888 45 (14) values of the g factor of lithiumlike silicon ^{28}Si^{11+}. The theoretical precision now is limited by the many-electron two-loop contributions of the bound-state QED. The experimental value is accurate enough to test these contributions on a few percent level.
Collapse
Affiliation(s)
- D A Glazov
- Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
| | - F Köhler-Langes
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - A V Volotka
- Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
- Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - F Heiße
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - G Plunien
- Institut für Theoretische Physik, Technische Universität Dresden, Mommsenstraße 13, D-01062 Dresden, Germany
| | - W Quint
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - S Rau
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - V M Shabaev
- Department of Physics, St. Petersburg State University, Universitetskaya 7/9, 199034 St. Petersburg, Russia
| | - S Sturm
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - G Werth
- Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany
| |
Collapse
|
10
|
Egl A, Arapoglou I, Höcker M, König K, Ratajczyk T, Sailer T, Tu B, Weigel A, Blaum K, Nörtershäuser W, Sturm S. Application of the Continuous Stern-Gerlach Effect for Laser Spectroscopy of the ^{40}Ar^{13+} Fine Structure in a Penning Trap. PHYSICAL REVIEW LETTERS 2019; 123:123001. [PMID: 31633964 DOI: 10.1103/physrevlett.123.123001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/05/2019] [Indexed: 06/10/2023]
Abstract
We report on the successful demonstration of a novel scheme for detecting optical transitions in highly charged ions. We applied it to determine the frequency of the dipole-forbidden 2p ^{2}P_{1/2}-^{2}P_{3/2} transition in the fine structure of ^{40}Ar^{13+} using a single ion stored in the harmonic potential of a Penning trap. Our measurement scheme does not require detection of fluorescence, instead it makes use of the continuous Stern-Gerlach effect. Our value of 679.216464(4)_{stat}(5)_{syst} THz is in reasonable agreement with the current best literature values and improves its uncertainty by a factor of 24.
Collapse
Affiliation(s)
- Alexander Egl
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Ioanna Arapoglou
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Martin Höcker
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Kristian König
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Tim Ratajczyk
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Tim Sailer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Bingsheng Tu
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Andreas Weigel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Klaus Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Sven Sturm
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|