1
|
Belushkin AV. Comparison of the Possibilities of Inelastic Scattering of Synchrotron Radiation and Neutrons for Studying Atomic, Molecular, and Magnetic Dynamics in Condensed Matter. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Yamakawa H, Miyamoto T, Morimoto T, Takamura N, Liang S, Yoshimochi H, Terashige T, Kida N, Suda M, Yamamoto HM, Mori H, Miyagawa K, Kanoda K, Okamoto H. Terahertz-field-induced polar charge order in electronic-type dielectrics. Nat Commun 2021; 12:953. [PMID: 33574221 PMCID: PMC7878852 DOI: 10.1038/s41467-021-20925-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/29/2020] [Indexed: 11/09/2022] Open
Abstract
Ultrafast electronic-phase change in solids by light, called photoinduced phase transition, is a central issue in the field of non-equilibrium quantum physics, which has been developed very recently. In most of those phenomena, charge or spin orders in an original phase are melted by photocarrier generations, while an ordered state is usually difficult to be created from a non-ordered state by a photoexcitation. Here, we demonstrate that a strong terahertz electric-field pulse changes a Mott insulator of an organic molecular compound in κ-(ET)2Cu[N(CN)2]Cl (ET = bis(ethylenedithio)tetrathiafulvalene), to a macroscopically polarized charge-order state; herein, electronic ferroelectricity is induced by the collective intermolecular charge transfers in each dimer. In contrast, in an isostructural compound, κ-(ET)2Cu2(CN)3, which shows the spin-liquid state at low temperatures, a similar polar charge order is not stabilized by the same terahertz pulse. From the comparative studies of terahertz-field-induced second-harmonic-generation and reflectivity changes in the two compounds, we suggest the possibility that a coupling of charge and spin degrees of freedom would play important roles in the stabilization of polar charge order.
Collapse
Affiliation(s)
- H Yamakawa
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - T Miyamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan.
| | - T Morimoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - N Takamura
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - S Liang
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - H Yoshimochi
- Department of Applied Physics, University of Tokyo, Bunkyo-Ku, 113-8656, Japan
| | - T Terashige
- AIST-UTokyo Advanced Operand-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Chiba, 277-8589, Japan
| | - N Kida
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - M Suda
- Division of Functional Molecular Systems, Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, 444-8585, Japan.,Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - H M Yamamoto
- Division of Functional Molecular Systems, Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Okazaki, 444-8585, Japan
| | - H Mori
- Institute for Solid State Physics, University of Tokyo, Chiba, 277-8581, Japan
| | - K Miyagawa
- Department of Applied Physics, University of Tokyo, Bunkyo-Ku, 113-8656, Japan
| | - K Kanoda
- Department of Applied Physics, University of Tokyo, Bunkyo-Ku, 113-8656, Japan
| | - H Okamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan. .,AIST-UTokyo Advanced Operand-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Chiba, 277-8589, Japan.
| |
Collapse
|