1
|
Dieball C, Godec A. Thermodynamic Bounds on Generalized Transport: From Single-Molecule to Bulk Observables. PHYSICAL REVIEW LETTERS 2024; 133:067101. [PMID: 39178466 DOI: 10.1103/physrevlett.133.067101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 08/25/2024]
Abstract
We prove that the transport of any differentiable scalar observable in d-dimensional nonequilibrium systems is bounded from above by the total entropy production scaled by the amount the observation "stretches" microscopic coordinates. The result-a time-integrated generalized speed limit-reflects the thermodynamic cost of transport of observables, and places underdamped and overdamped stochastic dynamics on equal footing with deterministic motion. Our work allows for stochastic thermodynamics to make contact with bulk experiments, and fills an important gap in thermodynamic inference, since microscopic dynamics is, at least for short times, underdamped. Requiring only averages but not sample-to-sample fluctuations, the proven transport bound is practical and applicable not only to single-molecule but also bulk experiments where only averages are observed, which we demonstrate by examples. Our results may facilitate thermodynamic inference on molecular machines without an obvious directionality from bulk observations of transients probed, e.g., in time-resolved x-ray scattering.
Collapse
|
2
|
Rose M, Manikandan SK. Role of interactions in nonequilibrium transformations. Phys Rev E 2024; 109:044136. [PMID: 38755940 DOI: 10.1103/physreve.109.044136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
For arbitrary nonequilibrium transformations in complex systems, we show that the distance between the current state and a target state can be decomposed into two terms: one corresponding to an independent estimate of the distance, and another corresponding to interactions, quantified using the relative mutual information between the variables. This decomposition is a special case of a more general decomposition involving successive orders of correlation or interactions among the degrees of freedom of the system. To illustrate its practical significance, we study the thermal relaxation of two interacting, optically trapped colloidal particles, where increasing pairwise interaction strength is shown to prolong the longevity of the time-dependent nonequilibrium state. Additionally, we study a system with both pairwise and triplet interactions, where our approach identifies their distinct contributions to the transformation. In more general setups where it is possible to control the strength of different orders of interactions, our findings provide a way to disentangle their effects and identify interactions that facilitate the transformation.
Collapse
Affiliation(s)
- Maria Rose
- School of Pure and Applied Physics, Mahatma Gandhi University, 686560 Kottayam, India
| | - Sreekanth K Manikandan
- NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden and Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
3
|
Hohm U, Schiller C. Testing the Minimum System Entropy and the Quantum of Entropy. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1511. [PMID: 37998203 PMCID: PMC10670145 DOI: 10.3390/e25111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Experimental and theoretical results about entropy limits for macroscopic and single-particle systems are reviewed. All experiments confirm the minimum system entropy S⩾kln2. We clarify in which cases it is possible to speak about a minimum system entropykln2 and in which cases about a quantum of entropy. Conceptual tensions with the third law of thermodynamics, with the additivity of entropy, with statistical calculations, and with entropy production are resolved. Black hole entropy is surveyed. Claims for smaller system entropy values are shown to contradict the requirement of observability, which, as possibly argued for the first time here, also implies the minimum system entropy kln2. The uncertainty relations involving the Boltzmann constant and the possibility of deriving thermodynamics from the existence of minimum system entropy enable one to speak about a general principle that is valid across nature.
Collapse
Affiliation(s)
- Uwe Hohm
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | | |
Collapse
|
4
|
Gu J. Speed limit, dissipation bound, and dissipation-time trade-off in thermal relaxation processes. Phys Rev E 2023; 108:L052103. [PMID: 38115476 DOI: 10.1103/physreve.108.l052103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/15/2023] [Indexed: 12/21/2023]
Abstract
We investigate bounds on speed, nonadiabatic entropy production, and the trade-off relation between them for classical stochastic processes with time-independent transition rates. Our results show that the time required to evolve from an initial to a desired target state is bounded from below by the information-theoretical ∞-Rényi divergence between these states, divided by the total rate. Furthermore, we conjecture and provide extensive numerical evidence for an information-theoretical bound on the nonadiabatic entropy production and a dissipation-time trade-off relation that outperforms previous bounds in some cases..
Collapse
Affiliation(s)
- Jie Gu
- Chengdu Academy of Education Sciences, Chengdu 610036, China
| |
Collapse
|
5
|
Shiraishi N. Entropy production limits all fluctuation oscillations. Phys Rev E 2023; 108:L042103. [PMID: 37978716 DOI: 10.1103/physreve.108.l042103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
The oscillation of fluctuation with two state observables is investigated. Following the idea of Ohga et al. [Phys. Rev. Lett. 131, 077101 (2023)10.1103/PhysRevLett.131.077101], we find that the fluctuation oscillation relative to their autocorrelations is bounded from above by the entropy production per characteristic maximum oscillation time. Our result applies to a variety of systems including Langevin systems, chemical reaction systems, and macroscopic systems. In addition, our bound consists of experimentally tractable quantities, which enables us to examine our inequality experimentally.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Faculty of arts and sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
6
|
Dieball C, Godec A. Direct Route to Thermodynamic Uncertainty Relations and Their Saturation. PHYSICAL REVIEW LETTERS 2023; 130:087101. [PMID: 36898097 DOI: 10.1103/physrevlett.130.087101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Thermodynamic uncertainty relations (TURs) bound the dissipation in nonequilibrium systems from below by fluctuations of an observed current. Contrasting the elaborate techniques employed in existing proofs, we here prove TURs directly from the Langevin equation. This establishes the TUR as an inherent property of overdamped stochastic equations of motion. In addition, we extend the transient TUR to currents and densities with explicit time dependence. By including current-density correlations we, moreover, derive a new sharpened TUR for transient dynamics. Our arguably simplest and most direct proof, together with the new generalizations, allows us to systematically determine conditions under which the different TURs saturate and thus allows for a more accurate thermodynamic inference. Finally, we outline the direct proof also for Markov jump dynamics.
Collapse
Affiliation(s)
- Cai Dieball
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| |
Collapse
|
7
|
Cao Z, Bao R, Zheng J, Hou Z. Fast Functionalization with High Performance in the Autonomous Information Engine. J Phys Chem Lett 2023; 14:66-72. [PMID: 36566388 DOI: 10.1021/acs.jpclett.2c03335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mandal and Jarzynski have proposed a fully autonomous information heat engine, consisting of a demon, a mass, and a memory register interacting with a thermal reservoir. This device converts thermal energy into mechanical work by writing information to a memory register or, conversely, erasing information by consuming mechanical work. Here, we derive a speed limit inequality between the relaxation time of state transformation and the distance between the initial and final distributions, where the combination of the dynamical activity and entropy production plays an important role. Such inequality provides a hint that a speed-performance trade-off relation exists between the relaxation time to a functional state and the average production. To obtain fast functionalization while maintaining the performance, we show that the relaxation dynamics of the information heat engine can be accelerated significantly by devising an optimal initial state of the demon. Our design principle is inspired by the so-called Mpemba effect, where water freezes faster when initially heated.
Collapse
Affiliation(s)
- Zhiyu Cao
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Ruicheng Bao
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Jiming Zheng
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| |
Collapse
|
8
|
Zou CJ, Li Y, Xu JK, You JB, Png CE, Yang WL. Geometrical Bounds on Irreversibility in Squeezed Thermal Bath. ENTROPY (BASEL, SWITZERLAND) 2023; 25:128. [PMID: 36673269 PMCID: PMC9858152 DOI: 10.3390/e25010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Irreversible entropy production (IEP) plays an important role in quantum thermodynamic processes. Here, we investigate the geometrical bounds of IEP in nonequilibrium thermodynamics by exemplifying a system coupled to a squeezed thermal bath subject to dissipation and dephasing, respectively. We find that the geometrical bounds of the IEP always shift in a contrary way under dissipation and dephasing, where the lower and upper bounds turning to be tighter occur in the situation of dephasing and dissipation, respectively. However, either under dissipation or under dephasing, we may reduce both the critical time of the IEP itself and the critical time of the bounds for reaching an equilibrium by harvesting the benefits of squeezing effects in which the values of the IEP, quantifying the degree of thermodynamic irreversibility, also become smaller. Therefore, due to the nonequilibrium nature of the squeezed thermal bath, the system-bath interaction energy has a prominent impact on the IEP, leading to tightness of its bounds. Our results are not contradictory with the second law of thermodynamics by involving squeezing of the bath as an available resource, which can improve the performance of quantum thermodynamic devices.
Collapse
Affiliation(s)
- Chen-Juan Zou
- Research Center of Nonlinear Science, School of Mathematical and Physical Science, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jia-Kun Xu
- Research Center of Nonlinear Science, School of Mathematical and Physical Science, Wuhan Textile University, Wuhan 430200, China
| | - Jia-Bin You
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Ching Eng Png
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Wan-Li Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
9
|
Mazzolo A, Monthus C. Nonequilibrium diffusion processes via non-Hermitian electromagnetic quantum mechanics with application to the statistics of entropy production in the Brownian gyrator. Phys Rev E 2023; 107:014101. [PMID: 36797928 DOI: 10.1103/physreve.107.014101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
The nonequilibrium Fokker-Planck dynamics in an arbitrary force field f[over ⃗](x[over ⃗]) in dimension N is revisited via the correspondence with the non-Hermitian quantum mechanics in a real scalar potential V(x[over ⃗]) and in a purely imaginary vector potential [-iA[over ⃗](x[over ⃗])] of real amplitude A[over ⃗](x[over ⃗]). The relevant parameters of irreversibility are then the N(N-1)/2 magnetic matrix elements B_{nm}(x[over ⃗])=-B_{mn}(x[over ⃗])=∂_{n}A_{m}(x[over ⃗])-∂_{m}A_{n}(x[over ⃗]), while it is enlightening to explore the corresponding gauge transformations of the vector potential A[over ⃗](x[over ⃗]). This quantum interpretation is even more fruitful to study the statistics of all the time-additive observables of the stochastic trajectories, since their generating functions correspond to the same quantum problem with additional scalar and/or vector potentials. Our main conclusion is that the analysis of their large deviations properties and the construction of the corresponding Doob conditioned processes can be drastically simplified via the choice of an appropriate gauge for each purpose. This general framework is then applied to the special time-additive observables of Ornstein-Uhlenbeck trajectories in dimension N, whose generating functions correspond to quantum propagators involving quadratic scalar potentials and linear vector potentials, i.e., to quantum harmonic oscillators in constant magnetic matrices. As simple illustrative example, we finally focus on the Brownian gyrator in dimension N=2 to compute the large deviations properties of the entropy production of its stochastic trajectories and to construct the corresponding conditioned processes having a given value of the entropy production per unit time.
Collapse
Affiliation(s)
- Alain Mazzolo
- Université Paris-Saclay, CEA, Service d'Études des Réacteurs et de Mathématiques Appliquées, 91191 Gif-sur-Yvette, France
| | - Cécile Monthus
- Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Ohga N, Ito S. Information-geometric structure for chemical thermodynamics: An explicit construction of dual affine coordinates. Phys Rev E 2022; 106:044131. [PMID: 36397558 DOI: 10.1103/physreve.106.044131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
We construct an information-geometric structure for chemical thermodynamics, applicable to a wide range of chemical reaction systems including nonideal and open systems. For this purpose, we explicitly construct dual affine coordinate systems, which completely designate an information-geometric structure, using the extent of reactions and the affinities of reactions as coordinates on a linearly constrained space of amounts of substances. The resulting structure induces a metric and a divergence (a function of two distributions of amounts), both expressed with chemical potentials. These quantities have been partially known for ideal-dilute solutions, but their extensions for nonideal solutions and the complete underlying structure are novel. The constructed geometry is a generalization of dual affine coordinates for stochastic thermodynamics. For example, the metric and the divergence are generalizations of the Fisher information and the Kullback-Leibler divergence. As an application, we identify the chemical-thermodynamic analog of the Hatano-Sasa excess entropy production using our divergence.
Collapse
Affiliation(s)
- Naruo Ohga
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sosuke Ito
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Dieball C, Godec A. Mathematical, Thermodynamical, and Experimental Necessity for Coarse Graining Empirical Densities and Currents in Continuous Space. PHYSICAL REVIEW LETTERS 2022; 129:140601. [PMID: 36240401 DOI: 10.1103/physrevlett.129.140601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
We present general results on fluctuations and spatial correlations of the coarse-grained empirical density and current of Markovian diffusion in equilibrium or nonequilibrium steady states on all timescales. We unravel a deep connection between current fluctuations and generalized time-reversal symmetry, providing new insight into time-averaged observables. We highlight the essential role of coarse graining in space from mathematical, thermodynamical, and experimental points of view. Spatial coarse graining is required to uncover salient features of currents that break detailed balance, and a thermodynamically "optimal" coarse graining ensures the most precise inference of dissipation. Defined without coarse graining, the fluctuations of empirical density and current are proven to diverge on all timescales in dimensions higher than one, which has far-reaching consequences for the central-limit regime in continuous space. We apply the results to examples of irreversible diffusion. Our findings provide new intuition about time-averaged observables and allow for a more efficient analysis of single-molecule experiments.
Collapse
Affiliation(s)
- Cai Dieball
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| |
Collapse
|
12
|
Verification of Information Thermodynamics in a Trapped Ion System. ENTROPY 2022; 24:e24060813. [PMID: 35741534 PMCID: PMC9222944 DOI: 10.3390/e24060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Information thermodynamics has developed rapidly over past years, and the trapped ions, as a controllable quantum system, have demonstrated feasibility to experimentally verify the theoretical predictions in the information thermodynamics. Here, we address some representative theories of information thermodynamics, such as the quantum Landauer principle, information equality based on the two-point measurement, information-theoretical bound of irreversibility, and speed limit restrained by the entropy production of system, and review their experimental demonstration in the trapped ion system. In these schemes, the typical physical processes, such as the entropy flow, energy transfer, and information flow, build the connection between thermodynamic processes and information variation. We then elucidate the concrete quantum control strategies to simulate these processes by using quantum operators and the decay paths in the trapped-ion system. Based on them, some significantly dynamical processes in the trapped ion system to realize the newly proposed information-thermodynamic models is reviewed. Although only some latest experimental results of information thermodynamics with a single trapped-ion quantum system are reviewed here, we expect to find more exploration in the future with more ions involved in the experimental systems.
Collapse
|
13
|
Van Vu T, Saito K. Thermodynamics of Precision in Markovian Open Quantum Dynamics. PHYSICAL REVIEW LETTERS 2022; 128:140602. [PMID: 35476476 DOI: 10.1103/physrevlett.128.140602] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The thermodynamic and kinetic uncertainty relations indicate trade-offs between the relative fluctuation of observables and thermodynamic quantities such as dissipation and dynamical activity. Although these relations have been well studied for classical systems, they remain largely unexplored in the quantum regime. In this Letter, we investigate such trade-off relations for Markovian open quantum systems whose underlying dynamics are quantum jumps, such as thermal processes and quantum measurement processes. Specifically, we derive finite-time lower bounds on the relative fluctuation of both dynamical observables and their first passage times for arbitrary initial states. The bounds imply that the precision of observables is constrained not only by thermodynamic quantities but also by quantum coherence. We find that the product of the relative fluctuation and entropy production or dynamical activity is enhanced by quantum coherence in a generic class of dissipative processes of systems with nondegenerate energy levels. Our findings provide insights into the survival of the classical uncertainty relations in quantum cases.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
14
|
Yan LL, Zhang JW, Yun MR, Li JC, Ding GY, Wei JF, Bu JT, Wang B, Chen L, Su SL, Zhou F, Jia Y, Liang EJ, Feng M. Experimental Verification of Dissipation-Time Uncertainty Relation. PHYSICAL REVIEW LETTERS 2022; 128:050603. [PMID: 35179926 DOI: 10.1103/physrevlett.128.050603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Dissipation is vital to any cyclic process in realistic systems. Recent research focus on nonequilibrium processes in stochastic systems has revealed a fundamental trade-off, called dissipation-time uncertainty relation, that entropy production rate associated with dissipation bounds the evolution pace of physical processes [Phys. Rev. Lett. 125, 120604 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.120604]. Following the dissipative two-level model exemplified in the same Letter, we experimentally verify this fundamental trade-off in a single trapped ultracold ^{40}Ca^{+} ion using elaborately designed dissipative channels, along with a postprocessing method developed in the data analysis, to build the effective nonequilibrium stochastic evolutions for the energy transfer between two heat baths mediated by a qubit. Since the dissipation-time uncertainty relation imposes a constraint on the quantum speed regarding entropy flux, our observation provides the first experimental evidence confirming such a speed restriction from thermodynamics on quantum operations due to dissipation, which helps us further understand the role of thermodynamical characteristics played in quantum information processing.
Collapse
Affiliation(s)
- L-L Yan
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - J-W Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - M-R Yun
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - J-C Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - G-Y Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - J-F Wei
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - J-T Bu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - B Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - L Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - S-L Su
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - F Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - Y Jia
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials and Engineering, Henan University, Kaifeng 475001, China
| | - E-J Liang
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - M Feng
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| |
Collapse
|
15
|
Kumar A, Chétrite R, Bechhoefer J. Anomalous heating in a colloidal system. Proc Natl Acad Sci U S A 2022; 119:e2118484119. [PMID: 35078935 PMCID: PMC8812517 DOI: 10.1073/pnas.2118484119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
We report anomalous heating in a colloidal system, an experimental observation of the inverse Mpemba effect, where for two initial temperatures lower than the temperature of the thermal bath, the colder of the two systems heats up faster when coupled to the same thermal bath. For an overdamped, Brownian colloidal particle moving in a tilted double-well potential, we find a nonmonotonic dependence of the heating times on the initial temperature of the system. Entropic effects make the inverse Mpemba effect generically weaker-harder to observe-than the usual Mpemba effect (anomalous cooling). We also observe a strong version of anomalous heating, where a cold system heats up exponentially faster than systems prepared under slightly different conditions.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Raphaël Chétrite
- Laboratoire J. A. Dieudonné, UMR CNRS 7351, Université de Nice Sophia Antipolis, 06108 Nice, France
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| |
Collapse
|
16
|
Van Vu T, Saito K. Finite-Time Quantum Landauer Principle and Quantum Coherence. PHYSICAL REVIEW LETTERS 2022; 128:010602. [PMID: 35061471 DOI: 10.1103/physrevlett.128.010602] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The Landauer principle states that any logically irreversible information processing must be accompanied by dissipation into the environment. In this Letter, we investigate the heat dissipation associated with finite-time information erasure and the effect of quantum coherence in such processes. By considering a scenario wherein information is encoded in an open quantum system whose dynamics are described by the Markovian Lindblad equation, we show that the dissipated heat is lower bounded by the conventional Landauer cost, as well as a correction term inversely proportional to the operational time. To clarify the relation between quantum coherence and dissipation, we derive a lower bound for heat dissipation in terms of quantum coherence. This bound quantitatively implies that the creation of quantum coherence in the energy eigenbasis during the erasure process inevitably leads to additional heat costs. The obtained bounds hold for arbitrary operational time and control protocol. By following an optimal control theory, we numerically present an optimal protocol and illustrate our findings by using a single-qubit system.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
17
|
Araki T, Gomez-Solano JR, Maciołek A. Relaxation to steady states of a binary liquid mixture around an optically heated colloid. Phys Rev E 2022; 105:014123. [PMID: 35193287 DOI: 10.1103/physreve.105.014123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We study the relaxation dynamics of a binary liquid mixture near a light-absorbing Janus particle after switching on and off illumination using experiments and theoretical models. The dynamics is controlled by the temperature gradient formed around the heated particle. Our results show that the relaxation is asymmetric: The approach to a nonequilibrium steady state is much slower than the return to thermal equilibrium. Approaching a nonequilibrium steady state after a sudden temperature change is a two-step process that overshoots the response of spatial variance of the concentration field. The initial growth of concentration fluctuations after switching on illumination follows a power law in agreement with the hydrodynamic and purely diffusive model. The energy outflow from the system after switching off illumination is well described by a stretched exponential function of time with characteristic time proportional to the ratio of the energy stored in the steady state to the total energy flux in this state.
Collapse
Affiliation(s)
- Takeaki Araki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Código Postal 04510, Mexico
| | - Anna Maciołek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
- Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| |
Collapse
|
18
|
Van Vu T, Hasegawa Y. Lower Bound on Irreversibility in Thermal Relaxation of Open Quantum Systems. PHYSICAL REVIEW LETTERS 2021; 127:190601. [PMID: 34797124 DOI: 10.1103/physrevlett.127.190601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
We consider the thermal relaxation process of a quantum system attached to single or multiple reservoirs. Quantifying the degree of irreversibility by entropy production, we prove that the irreversibility of the thermal relaxation is lower bounded by a relative entropy between the unitarily evolved state and the final state. The bound characterizes the state discrepancy induced by the nonunitary dynamics, and thus reflects the dissipative nature of irreversibility. Intriguingly, the bound can be evaluated solely in terms of the initial and final states and the system Hamiltonian, thereby providing a feasible way to estimate entropy production without prior knowledge of the underlying coupling structure. This finding refines the second law of thermodynamics and reveals a universal feature of thermal relaxation processes.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Zhen YZ, Egloff D, Modi K, Dahlsten O. Universal Bound on Energy Cost of Bit Reset in Finite Time. PHYSICAL REVIEW LETTERS 2021; 127:190602. [PMID: 34797137 DOI: 10.1103/physrevlett.127.190602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
We consider how the energy cost of bit reset scales with the time duration of the protocol. Bit reset necessarily takes place in finite time, where there is an extra penalty on top of the quasistatic work cost derived by Landauer. This extra energy is dissipated as heat in the computer, inducing a fundamental limit on the speed of irreversible computers. We formulate a hardware-independent expression for this limit in the framework of stochastic processes. We derive a closed-form lower bound on the work penalty as a function of the time taken for the protocol and bit reset error. It holds for discrete as well as continuous systems, assuming only that the master equation respects detailed balance.
Collapse
Affiliation(s)
- Yi-Zheng Zhen
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Dario Egloff
- Institute of Theoretical Physics, Technische Universität Dresden, D-01062 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Kavan Modi
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Oscar Dahlsten
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Meibohm J, Forastiere D, Adeleke-Larodo T, Proesmans K. Relaxation-speed crossover in anharmonic potentials. Phys Rev E 2021; 104:L032105. [PMID: 34654171 DOI: 10.1103/physreve.104.l032105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
In a recent Letter [A. Lapolla and A. Godec, Phys. Rev. Lett. 125, 110602 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.110602], thermal relaxation was observed to occur faster from cold to hot (heating) than from hot to cold (cooling). Here we show that overdamped diffusion in anharmonic potentials generically exhibits both faster heating and faster cooling, depending on the initial temperatures and on the potential's degree of anharmonicity. We draw a relaxation-speed phase diagram that localizes the different behaviors in parameter space. In addition to faster-heating and faster-cooling regions, we identify a crossover region in the phase diagram, where heating is initially slower but asymptotically faster than cooling. The structure of the phase diagram is robust against the inclusion of a confining, harmonic term in the potential as well as moderate changes of the measure used to define initially equidistant temperatures.
Collapse
Affiliation(s)
- Jan Meibohm
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Danilo Forastiere
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Tunrayo Adeleke-Larodo
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Karel Proesmans
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg.,Hasselt University, B-3590 Diepenbeek, Belgium
| |
Collapse
|
21
|
Pires DP, Modi K, Céleri LC. Bounding generalized relative entropies: Nonasymptotic quantum speed limits. Phys Rev E 2021; 103:032105. [PMID: 33862799 DOI: 10.1103/physreve.103.032105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Information theory has become an increasingly important research field to better understand quantum mechanics. Noteworthy, it covers both foundational and applied perspectives, also offering a common technical language to study a variety of research areas. Remarkably, one of the key information-theoretic quantities is given by the relative entropy, which quantifies how difficult is to tell apart two probability distributions, or even two quantum states. Such a quantity rests at the core of fields like metrology, quantum thermodynamics, quantum communication, and quantum information. Given this broadness of applications, it is desirable to understand how this quantity changes under a quantum process. By considering a general unitary channel, we establish a bound on the generalized relative entropies (Rényi and Tsallis) between the output and the input of the channel. As an application of our bounds, we derive a family of quantum speed limits based on relative entropies. Possible connections between this family with thermodynamics, quantum coherence, asymmetry, and single-shot information theory are briefly discussed.
Collapse
Affiliation(s)
- Diego Paiva Pires
- International Institute of Physics and Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Kavan Modi
- School of Physics & Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Lucas Chibebe Céleri
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- Institute of Physics, Federal University of Goiás, 74.690-900 Goiânia, Goiás, Brazil
| |
Collapse
|
22
|
Van Vu T, Hasegawa Y. Geometrical Bounds of the Irreversibility in Markovian Systems. PHYSICAL REVIEW LETTERS 2021; 126:010601. [PMID: 33480766 DOI: 10.1103/physrevlett.126.010601] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
We derive geometrical bounds on the irreversibility in both quantum and classical Markovian open systems that satisfy the detailed balance condition. Using information geometry, we prove that irreversible entropy production is bounded from below by a modified Wasserstein distance between the initial and final states, thus strengthening the Clausius inequality in the reversible-Markov case. The modified metric can be regarded as a discrete-state generalization of the Wasserstein metric, which has been used to bound dissipation in continuous-state Langevin systems. Notably, the derived bounds can be interpreted as the quantum and classical speed limits, implying that the associated entropy production constrains the minimum time of transforming a system state. We illustrate the results on several systems and show that a tighter bound than the Carnot bound for the efficiency of quantum heat engines can be obtained.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
23
|
Abiuso P, Miller HJD, Perarnau-Llobet M, Scandi M. Geometric Optimisation of Quantum Thermodynamic Processes. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1076. [PMID: 33286845 PMCID: PMC7597153 DOI: 10.3390/e22101076] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent Lindblad master equations, and discrete processes. A geometric lower bound on entropy production in finite-time is then presented, which represents a quantum generalisation of the original classical bound. Following this, we review and develop some general principles for the optimisation of thermodynamic processes in the linear-response regime. These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles around the point of maximal ratio between heat capacity and relaxation time for Carnot engines.
Collapse
Affiliation(s)
- Paolo Abiuso
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; (P.A.); (M.S.)
| | - Harry J. D. Miller
- Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| | | | - Matteo Scandi
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain; (P.A.); (M.S.)
| |
Collapse
|
24
|
Lapolla A, Godec A. Faster Uphill Relaxation in Thermodynamically Equidistant Temperature Quenches. PHYSICAL REVIEW LETTERS 2020; 125:110602. [PMID: 32975999 DOI: 10.1103/physrevlett.125.110602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/13/2020] [Accepted: 08/10/2020] [Indexed: 05/29/2023]
Abstract
We uncover an unforeseen asymmetry in relaxation: for a pair of thermodynamically equidistant temperature quenches, one from a lower and the other from a higher temperature, the relaxation at the ambient temperature is faster in the case of the former. We demonstrate this finding on hand of two exactly solvable many-body systems relevant in the context of single-molecule and tracer-particle dynamics. We prove that near stable minima and for all quadratic energy landscapes it is a general phenomenon that also exists in a class of non-Markovian observables probed in single-molecule and particle-tracking experiments. The asymmetry is a general feature of reversible overdamped diffusive systems with smooth single-well potentials and occurs in multiwell landscapes when quenches disturb predominantly intrawell equilibria. Our findings may be relevant for the optimization of stochastic heat engines.
Collapse
Affiliation(s)
- Alessio Lapolla
- Mathematical bioPhysics group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Aljaž Godec
- Mathematical bioPhysics group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|