1
|
Clarke J, Neveu P, Khosla KE, Verhagen E, Vanner MR. Cavity Quantum Optomechanical Nonlinearities and Position Measurement beyond the Breakdown of the Linearized Approximation. PHYSICAL REVIEW LETTERS 2023; 131:053601. [PMID: 37595248 DOI: 10.1103/physrevlett.131.053601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 08/20/2023]
Abstract
Several optomechanics experiments are now entering the highly sought nonlinear regime where optomechanical interactions are large even for low light levels. Within this regime, new quantum phenomena and improved performance may be achieved; however, a corresponding theoretical formalism of cavity quantum optomechanics that captures the nonlinearities of both the radiation-pressure interaction and the cavity response is needed to unlock these capabilities. Here, we develop such a nonlinear cavity quantum optomechanical framework, which we then utilize to propose how position measurement can be performed beyond the breakdown of the linearized approximation. Our proposal utilizes optical general-dyne detection, ranging from single to dual homodyne, to obtain mechanical position information imprinted onto both the optical amplitude and phase quadratures and enables both pulsed and continuous modes of operation. These cavity optomechanical nonlinearities are now being confronted in a growing number of experiments, and our framework will allow a range of advances to be made in, e.g., quantum metrology, explorations of the standard quantum limit, and quantum measurement and control.
Collapse
Affiliation(s)
- J Clarke
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
| | - P Neveu
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - K E Khosla
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
| | - E Verhagen
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - M R Vanner
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
| |
Collapse
|
2
|
Navarathna A, Bennett JS, Bowen WP. Continuous Optical-to-Mechanical Quantum State Transfer in the Unresolved Sideband Regime. PHYSICAL REVIEW LETTERS 2023; 130:263603. [PMID: 37450795 DOI: 10.1103/physrevlett.130.263603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Optical-to-mechanical quantum state transfer is an important capability for future quantum networks, quantum communication, and distributed quantum sensing. However, existing continuous state transfer protocols operate in the resolved sideband regime, necessitating a high-quality optical cavity and a high mechanical resonance frequency. Here, we propose a continuous protocol that operates in the unresolved sideband regime. The protocol is based on feedback cooling, can be implemented with current technology, and is able to transfer non-Gaussian quantum states with high fidelity. Our protocol significantly expands the kinds of optomechanical devices for which continuous optical-to-mechanical state transfer is possible, paving the way toward quantum technological applications and the preparation of macroscopic superpositions to test the fundamentals of quantum science.
Collapse
Affiliation(s)
- Amy Navarathna
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Queensland 4072, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
| | - James S Bennett
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Queensland 4072, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Quantum Dynamics, Griffith University, Nathan, Queensland 4222, Australia
| | - Warwick P Bowen
- ARC Centre of Excellence for Engineered Quantum Systems, St Lucia, Queensland 4072, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
3
|
Burgwal R, Verhagen E. Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device. Nat Commun 2023; 14:1526. [PMID: 36934101 PMCID: PMC10024728 DOI: 10.1038/s41467-023-37138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/27/2023] [Indexed: 03/20/2023] Open
Abstract
The nonlinear component of the optomechanical interaction between light and mechanical vibration promises many exciting classical and quantum mechanical applications, but is generally weak. Here we demonstrate enhancement of nonlinear optomechanical measurement of mechanical motion by using pairs of coupled optical and mechanical modes in a photonic crystal device. In the same device we show linear optomechanical measurement with a strongly reduced input power and reveal how both enhancements are related. Our design exploits anisotropic mechanical elasticity to create strong coupling between mechanical modes while not changing optical properties. Additional thermo-optic tuning of the optical modes is performed with an auxiliary laser and a thermally-optimised device design. We envision broad use of this enhancement scheme in multimode phonon lasing, two-phonon heralding and eventually nonlinear quantum optomechanics.
Collapse
Affiliation(s)
- Roel Burgwal
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Ewold Verhagen
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Guo J, Gröblacher S. Integrated optical-readout of a high-Q mechanical out-of-plane mode. LIGHT, SCIENCE & APPLICATIONS 2022; 11:282. [PMID: 36171197 PMCID: PMC9519924 DOI: 10.1038/s41377-022-00966-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 05/12/2023]
Abstract
The rapid development of high-QM macroscopic mechanical resonators has enabled great advances in optomechanics. Further improvements could allow for quantum-limited or quantum-enhanced applications at ambient temperature. Some of the remaining challenges include the integration of high-QM structures on a chip, while simultaneously achieving large coupling strengths through an optical read-out. Here, we present a versatile fabrication method, which allows us to build fully integrated optomechanical structures. We place a photonic crystal cavity directly above a mechanical resonator with high-QM fundamental out-of-plane mode, separated by a small gap. The highly confined optical field has a large overlap with the mechanical mode, enabling strong optomechanical interaction strengths. Furthermore, we implement a novel photonic crystal design, which allows for a very large cavity photon number, a highly important feature for optomechanical experiments and sensor applications. Our versatile approach is not limited to our particular design but allows for integrating an out-of-plane optical read-out into almost any device layout. Additionally, it can be scaled to large arrays and paves the way to realizing quantum experiments and applications with mechanical resonators based on high-QM out-of-plane modes alike.
Collapse
Affiliation(s)
- Jingkun Guo
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ, Delft, The Netherlands
| | - Simon Gröblacher
- Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ, Delft, The Netherlands.
| |
Collapse
|
5
|
Enzian G, Freisem L, Price JJ, Svela AØ, Clarke J, Shajilal B, Janousek J, Buchler BC, Lam PK, Vanner MR. Non-Gaussian Mechanical Motion via Single and Multiphonon Subtraction from a Thermal State. PHYSICAL REVIEW LETTERS 2021; 127:243601. [PMID: 34951800 DOI: 10.1103/physrevlett.127.243601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Quantum optical measurement techniques offer a rich avenue for quantum control of mechanical oscillators via cavity optomechanics. In particular, a powerful yet little explored combination utilizes optical measurements to perform heralded non-Gaussian mechanical state preparation followed by tomography to determine the mechanical phase-space distribution. Here, we experimentally perform heralded single-phonon and multiphonon subtraction via photon counting to a laser-cooled mechanical thermal state with a Brillouin optomechanical system at room temperature and use optical heterodyne detection to measure the s-parametrized Wigner distribution of the non-Gaussian mechanical states generated. The techniques developed here advance the state of the art for optics-based tomography of mechanical states and will be useful for a broad range of applied and fundamental studies that utilize mechanical quantum-state engineering and tomography.
Collapse
Affiliation(s)
- G Enzian
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - L Freisem
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - J J Price
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - A Ø Svela
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for the Science of Light, Staudtstaße 2, 91058 Erlangen, Germany
| | - J Clarke
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
| | - B Shajilal
- Centre for Quantum Computation and Communication Technology, Research School of Physics and Engineering, Australian National University, Canberra 2601, Australia
| | - J Janousek
- Centre for Quantum Computation and Communication Technology, Research School of Physics and Engineering, Australian National University, Canberra 2601, Australia
| | - B C Buchler
- Centre for Quantum Computation and Communication Technology, Research School of Physics and Engineering, Australian National University, Canberra 2601, Australia
| | - P K Lam
- Centre for Quantum Computation and Communication Technology, Research School of Physics and Engineering, Australian National University, Canberra 2601, Australia
| | - M R Vanner
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
6
|
Patel RN, McKenna TP, Wang Z, Witmer JD, Jiang W, Van Laer R, Sarabalis CJ, Safavi-Naeini AH. Room-Temperature Mechanical Resonator with a Single Added or Subtracted Phonon. PHYSICAL REVIEW LETTERS 2021; 127:133602. [PMID: 34623823 DOI: 10.1103/physrevlett.127.133602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
A room-temperature mechanical oscillator undergoes thermal Brownian motion with an amplitude much larger than the amplitude associated with a single phonon of excitation. This motion can be read out and manipulated using laser light using a cavity-optomechanical approach. By performing a strong quantum measurement (i.e., counting single photons in the sidebands imparted on a laser), we herald the addition and subtraction of single phonons on the 300 K thermal motional state of a 4 GHz mechanical oscillator. To understand the resulting mechanical state, we implement a tomography scheme and observe highly non-Gaussian phase-space distributions. Using a maximum likelihood method, we infer the density matrix of the oscillator, and we confirm the counterintuitive doubling of the mean phonon number resulting from phonon addition and subtraction.
Collapse
Affiliation(s)
- Rishi N Patel
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Timothy P McKenna
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Zhaoyou Wang
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Jeremy D Witmer
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Wentao Jiang
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Raphaël Van Laer
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Christopher J Sarabalis
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Amir H Safavi-Naeini
- Department of Applied Physics, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
7
|
Gao YP, Wang C. Hybrid coupling optomechanical assisted nonreciprocal photon blockade. OPTICS EXPRESS 2021; 29:25161-25172. [PMID: 34614853 DOI: 10.1364/oe.431211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The properties of the open quantum system in quantum information is a science now extensively investigated more generally as a fundamental issue for a variety of applications. Usually, the states of the open quantum system might be disturbed by decoherence which will reduce the fidelity in the quantum information processing. So it is better to eliminate the influence of the environment. However, as part of the composite system, rational use of the environment system could be beneficial to quantum information processing. Here we theoretically studied the environment induced quantum nonlinearity and energy spectrum tuning method in the optomechanical system. And we found that the dissipation coupling of the hybrid dissipation and dispersion optomechanical system can induce the coupling between the environment and system in the cross-Kerr interaction form. When the symmetry is broken with a directional auxiliary field, the system exhibits the non-reciprocal behavior during the photon excitation and photon blockade for the clockwise and counterclockwise modes of the whispering gallery mode microcavity. Furthermore, we believe that the cross-Kerr coupling can be more widely used in quantum information processing and quantum simulation.
Collapse
|
8
|
Biagi N, Bohmann M, Agudelo E, Bellini M, Zavatta A. Experimental Certification of Nonclassicality via Phase-Space Inequalities. PHYSICAL REVIEW LETTERS 2021; 126:023605. [PMID: 33512213 DOI: 10.1103/physrevlett.126.023605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
In spite of its fundamental importance in quantum science and technology, the experimental certification of nonclassicality is still a challenging task, especially in realistic scenarios where losses and noise imbue the system. Here, we present the first experimental implementation of the recently introduced phase-space inequalities for nonclassicality certification, which conceptually unite phase-space representations with correlation conditions. We demonstrate the practicality and sensitivity of this approach by studying nonclassicality of a family of noisy and lossy quantum states of light. To this end, we experimentally generate single-photon-added thermal states with various thermal mean photon numbers and detect them at different loss levels. Based on the reconstructed Wigner and Husimi Q functions, the inequality conditions detect nonclassicality despite the fact that the involved distributions are nonnegative, which includes cases of high losses (93%) and cases where other established methods do not reveal nonclassicality. We show the advantages of the implemented approach and discuss possible extensions that assure a wide applicability for quantum science and technologies.
Collapse
Affiliation(s)
- Nicola Biagi
- Istituto Nazionale di Ottica (CNR-INO), L.go E. Fermi 6, 50125 Florence, Italy
- LENS and Department of Physics & Astronomy, University of Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Martin Bohmann
- Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
- Vienna Center for Quantum Science and Technology (VCQ), Vienna, Austria
| | - Elizabeth Agudelo
- Institute for Quantum Optics and Quantum Information-IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - Marco Bellini
- Istituto Nazionale di Ottica (CNR-INO), L.go E. Fermi 6, 50125 Florence, Italy
- LENS and Department of Physics & Astronomy, University of Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessandro Zavatta
- Istituto Nazionale di Ottica (CNR-INO), L.go E. Fermi 6, 50125 Florence, Italy
- LENS and Department of Physics & Astronomy, University of Firenze, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|