1
|
Herrero C, Ediger MD, Berthier L. Front propagation in ultrastable glasses is dynamically heterogeneous. J Chem Phys 2023; 159:114504. [PMID: 37724735 DOI: 10.1063/5.0168506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
Upon heating, ultrastable glassy films transform into liquids via a propagating equilibration front, resembling the heterogeneous melting of crystals. A microscopic understanding of this robust phenomenology is, however, lacking because experimental resolution is limited. We simulate the heterogeneous transformation kinetics of ultrastable configurations prepared using the swap Monte Carlo algorithm, thus allowing a direct comparison with experiments. We resolve the liquid-glass interface both in space and in time as well as the underlying particle motion responsible for its propagation. We perform a detailed statistical analysis of the interface geometry and kinetics over a broad range of temperatures. We show that the dynamic heterogeneity of the bulk liquid is passed on to the front that propagates heterogeneously in space and intermittently in time. This observation allows us to relate the averaged front velocity to the equilibrium diffusion coefficient of the liquid. We suggest that an experimental characterization of the interface geometry during the heterogeneous devitrification of ultrastable glassy films could provide direct experimental access to the long-sought characteristic length scale of dynamic heterogeneity in bulk supercooled liquids.
Collapse
Affiliation(s)
- Cecilia Herrero
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Mark D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Herrero C, Scalliet C, Ediger MD, Berthier L. Two-step devitrification of ultrastable glasses. Proc Natl Acad Sci U S A 2023; 120:e2220824120. [PMID: 37040403 PMCID: PMC10120036 DOI: 10.1073/pnas.2220824120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/11/2023] [Indexed: 04/12/2023] Open
Abstract
The discovery of ultrastable glasses raises novel challenges about glassy systems. Recent experiments studied the macroscopic devitrification of ultrastable glasses into liquids upon heating but lacked microscopic resolution. We use molecular dynamics simulations to analyze the kinetics of this transformation. In the most stable systems, devitrification occurs after a very large time, but the liquid emerges in two steps. At short times, we observe the rare nucleation and slow growth of isolated droplets containing a liquid maintained under pressure by the rigidity of the surrounding glass. At large times, pressure is released after the droplets coalesce into large domains, which accelerates devitrification. This two-step process produces pronounced deviations from the classical Avrami kinetics and explains the emergence of a giant lengthscale characterizing the devitrification of bulk ultrastable glasses. Our study elucidates the nonequilibrium kinetics of glasses following a large temperature jump, which differs from both equilibrium relaxation and aging dynamics, and will guide future experimental studies.
Collapse
Affiliation(s)
- Cecilia Herrero
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier34095, France
| | - Camille Scalliet
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI53706
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier34095, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| |
Collapse
|
3
|
Zhang Q, Li W, Qiao K, Han Y. Surface premelting and melting of colloidal glasses. SCIENCE ADVANCES 2023; 9:eadf1101. [PMID: 36930717 PMCID: PMC10022898 DOI: 10.1126/sciadv.adf1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The nature of liquid-to-glass transition is a major puzzle in science. A similar challenge exists in glass-to-liquid transition, i.e., glass melting, especially for the poorly investigated surface effects. Here, we assemble colloidal glasses by vapor deposition and melt them by tuning particle attractions. The structural and dynamic parameters saturate at different depths, which define a surface liquid layer and an intermediate glassy layer. The power-law growth of both layers and melting front behaviors at different heating rates are similar to crystal premelting and melting, suggesting that premelting and melting can be generalized to amorphous solids. The measured single-particle kinetics reveal various features and confirm theoretical predictions for glass surface layer.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Li
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Kaiyao Qiao
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Zhang A, Moore AR, Zhao H, Govind S, Wolf SE, Jin Y, Walsh PJ, Riggleman RA, Fakhraai Z. The role of intramolecular relaxations on the structure and stability of vapor-deposited glasses. J Chem Phys 2022; 156:244703. [DOI: 10.1063/5.0087600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Stable glasses (SGs) are formed through surface-mediated equilibration (SME) during physical vapor deposition (PVD). Unlike intermolecular interactions, the role of intramolecular degrees of freedom in this process remains unexplored. Here, using experiments and coarse-grained molecular dynamics simulations, we demonstrate that varying dihedral rotation barriers of even a single bond, in otherwise isomeric molecules, can strongly influence the structure and stability of PVD glasses. These effects arise from variations in the degree of surface mobility, mobility gradients, and mobility anisotropy, at a given deposition temperature ( T dep). At high T dep, flexible molecules have access to more configurations, which enhances the rate of SME, forming isotropic SGs. At low T dep, stability is achieved by out of equilibrium aging of the surface layer. Here, the poor packing of rigid molecules enhances the rate of surface-mediated aging, producing stable glasses with layered structures in a broad range of T dep. In contrast, the dynamics of flexible molecules couple more efficiently to the glass layers underneath, resulting in reduced mobility and weaker mobility gradients, producing unstable glasses. Independent of stability, the flattened shape of flexible molecules can also promote in-plane orientational order at low T dep. These results indicate that small changes in intramolecular relaxation barriers can be used as an approach to independently tune the structure and mobility profiles of the surface layer and, thus, the stability and structure of PVD glasses.
Collapse
Affiliation(s)
- Aixi Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alex R. Moore
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Haoqiang Zhao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shivajee Govind
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sarah E. Wolf
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yi Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick J. Walsh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert A. Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
5
|
Bishop C, Bagchi K, Toney MF, Ediger MD. Vapor deposition rate modifies anisotropic glassy structure of an anthracene-based organic semiconductor. J Chem Phys 2022; 156:014504. [PMID: 34998353 DOI: 10.1063/5.0074092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We control the anisotropic molecular packing of vapor-deposited glasses of ABH113, a deuterated anthracene derivative with promise for future organic light emitting diode materials, by changing the deposition rate and substrate temperature at which they are prepared. We find that at substrate temperatures from 0.65 Tg to 0.92 Tg, the deposition rate significantly modifies the orientational order in the vapor-deposited glasses as characterized by x-ray scattering and birefringence. Both measures of anisotropic order can be described by a single deposition rate-substrate temperature superposition (RTS). This supports the applicability of the surface equilibration mechanism and generalizes the RTS principle from previous model systems with liquid crystalline order to non-mesogenic organic semiconductors. We find that vapor-deposited glasses of ABH113 have significantly enhanced density and thermal stability compared to their counterparts prepared by liquid-cooling. For organic semiconductors, the results of this study provide an efficient guide for using the deposition rate to prepare stable glasses with controlled molecular packing.
Collapse
Affiliation(s)
- Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael F Toney
- College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Luo P, Zhu F, Lv YM, Lu Z, Shen LQ, Zhao R, Sun YT, Vaughan GBM, di Michiel M, Ruta B, Bai HY, Wang WH. Microscopic Structural Evolution during Ultrastable Metallic Glass Formation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40098-40105. [PMID: 34375527 DOI: 10.1021/acsami.1c10716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By decreasing the rate of physical vapor deposition, ZrCuAl metallic glasses with improved stability and mechanical performances can be formed, while the microscopic structural mechanisms remain unclear. Here, with scanning transmission electron microscopy and high-energy synchrotron X-ray diffraction, we found that the metallic glass deposited at a higher rate exhibits a heterogeneous structure with compositional fluctuations at a distance of a few nanometers, which gradually disappear on decreasing the deposition rate; eventually, a homogeneous structure is developed approaching ultrastability. This microscopic structural evolution suggests the existence of the following two dynamical processes during ultrastable metallic glass formation: a faster diffusion process driven by the kinetic energy of the depositing atoms, which results in nanoscale compositional fluctuations, and a slower collective relaxation process that eliminates the compositional and structural heterogeneity, equilibrates the deposited atoms, and strengthens the local atomic connectivity.
Collapse
Affiliation(s)
- Peng Luo
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Zhu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Yu-Miao Lv
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Lu
- World Premier International Research Centers Initiative (WPI), Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Lai-Quan Shen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Zhao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi-Tao Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Gavin B M Vaughan
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
| | - Marco di Michiel
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
| | - Beatrice Ruta
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne 69622, France
| | - Hai-Yang Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ediger MD, Gruebele M, Lubchenko V, Wolynes PG. Glass Dynamics Deep in the Energy Landscape. J Phys Chem B 2021; 125:9052-9068. [PMID: 34357766 DOI: 10.1021/acs.jpcb.1c01739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When a liquid is cooled, progress down the energy landscape is arrested near the glass transition temperature Tg. In principle, lower energy states can be accessed by waiting for further equilibration, but the rough energy landscape of glasses quickly leads to kinetics on geologically slow time scales below Tg. Over the past decade, progress has been made probing deeper into the energy landscape via several techniques. By looking at bulk and surface diffusion, using layered deposition that promotes equilibration, imaging glass surfaces with faster dynamics below Tg, and optically exciting glasses, experiments have moved into a regime of ultrastable, low energy glasses that was difficult to access in the past. At the same time, both simulations and energy landscape theory based on a random first order transition (RFOT) have tackled systems that include surfaces, optical excitation, and interfacial dynamics. Here we review some of the recent experimental work, and how energy landscape theory illuminates glassy dynamics well below the glass transition temperature by making direct connections between configurational entropy, energy landscape barriers, and the resulting dynamics.
Collapse
Affiliation(s)
- Mark D Ediger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Martin Gruebele
- Department of Chemistry, Department of Physics, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Vassiliy Lubchenko
- Departments of Chemistry and Physics, and the Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Peter G Wolynes
- Departments of Chemistry, Physics and Astronomy, Biosciences, Materials Science and Nanoengineering, and the Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Lulli M, Lee CS, Deng HY, Yip CT, Lam CH. Spatial Heterogeneities in Structural Temperature Cause Kovacs' Expansion Gap Paradox in Aging of Glasses. PHYSICAL REVIEW LETTERS 2020; 124:095501. [PMID: 32202859 DOI: 10.1103/physrevlett.124.095501] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Volume and enthalpy relaxation of glasses after a sudden temperature change has been extensively studied since Kovacs' seminal work. One observes an asymmetric approach to equilibrium upon cooling versus heating and, more counterintuitively, the expansion gap paradox, i.e., a dependence on the initial temperature of the effective relaxation time even close to equilibrium when heating. Here, we show that a distinguishable-particle lattice model can capture both the asymmetry and the paradox. We quantitatively characterize the energetic states of the particle configurations using a physical realization of the fictive temperature called the structural temperature, which, in the heating case, displays a strong spatial heterogeneity. The system relaxes by nucleation and expansion of warmer mobile domains having attained the final temperature, against cooler immobile domains maintained at the initial temperature. A small population of these cooler regions persists close to equilibrium, thus explaining the paradox.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chun-Shing Lee
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China
| | - Hai-Yao Deng
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Cho-Tung Yip
- School of Science, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Chi-Hang Lam
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
9
|
Vila-Costa A, Ràfols-Ribé J, González-Silveira M, Lopeandia AF, Abad-Muñoz L, Rodríguez-Viejo J. Nucleation and Growth of the Supercooled Liquid Phase Control Glass Transition in Bulk Ultrastable Glasses. PHYSICAL REVIEW LETTERS 2020; 124:076002. [PMID: 32142312 DOI: 10.1103/physrevlett.124.076002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
We report the anomalous bulk transformation of vapor deposited stable glasses into the liquid state. The transformation proceeds through two competing parallel processes: partial rejuvenation of the stable glass and nucleation and growth of liquid patches within the glass. The kinetics of the transformation extracted from heat capacity curves after isothermal runs is dominated by the heterogeneous nucleation and growth process that initiates at preexisting seeds and propagates radially at a velocity proportional to the alpha relaxation time. Remarkably, the distance between the activation seeds is independent of temperature within experimental uncertainty and amounts to several micrometers, a value in close agreement with the crossover length for TPD glasses. We speculate the initiation sites for the transformation of the glass into the supercooled liquid are localized regions of lower stability (or density).
Collapse
Affiliation(s)
- A Vila-Costa
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - J Ràfols-Ribé
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - M González-Silveira
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - A F Lopeandia
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Ll Abad-Muñoz
- Instituto de Microelectrónica de Barcelona-Centre Nacional de Microelectrònica, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - J Rodríguez-Viejo
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
10
|
Flenner E, Berthier L, Charbonneau P, Fullerton CJ. Front-Mediated Melting of Isotropic Ultrastable Glasses. PHYSICAL REVIEW LETTERS 2019; 123:175501. [PMID: 31702270 DOI: 10.1103/physrevlett.123.175501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 06/10/2023]
Abstract
Ultrastable vapor-deposited glasses display uncommon material properties. Most remarkably, upon heating they are believed to melt via a liquid front that originates at the free surface and propagates over a mesoscopic crossover length, before crossing over to bulk melting. We combine swap Monte Carlo with molecular dynamics simulations to prepare and melt isotropic amorphous films of unprecedendtly high kinetic stability. We are able to directly observe both bulk and front melting, and the crossover between them. We measure the front velocity over a broad range of conditions, and a crossover length scale that grows to nearly 400 particle diameters in the regime accessible to simulations. Our results disentangle the relative roles of kinetic stability and vapor deposition in the physical properties of stable glasses.
Collapse
Affiliation(s)
- Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins Colorado 80523, USA
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Christopher J Fullerton
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|