1
|
Zhu XL, Liu WY, Yu TP, Chen M, Weng SM, Wang WM, Sheng ZM. Dense Polarized Positrons from Beam-Solid Interaction. PHYSICAL REVIEW LETTERS 2024; 132:235001. [PMID: 38905668 DOI: 10.1103/physrevlett.132.235001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/08/2024] [Indexed: 06/23/2024]
Abstract
Relativistic positron sources with high spin polarization have important applications in nuclear and particle physics and many frontier fields. However, it is challenging to produce dense polarized positrons. Here we present a simple and effective method to achieve such a positron source by directly impinging a relativistic high-density electron beam on the surface of a solid target. During the interaction, a strong return current of plasma electrons is induced and subsequently asymmetric quasistatic magnetic fields as high as megatesla are generated along the target surface. This gives rise to strong radiative spin flips and multiphoton processes, thus leading to efficient generation of copious polarized positrons. With three-dimensional particle-in-cell simulations, we demonstrate the production of a dense highly polarized multi-GeV positron beam with an average spin polarization above 40% and nC-scale charge per shot. This offers a novel route for the studies of laserless strong-field quantum electrodynamics physics and for the development of high-energy polarized positron sources.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zheng-Ming Sheng
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Xue K, Sun T, Wei KJ, Li ZP, Zhao Q, Wan F, Lv C, Zhao YT, Xu ZF, Li JX. Generation of High-Density High-Polarization Positrons via Single-Shot Strong Laser-Foil Interaction. PHYSICAL REVIEW LETTERS 2023; 131:175101. [PMID: 37955489 DOI: 10.1103/physrevlett.131.175101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/19/2023] [Indexed: 11/14/2023]
Abstract
We put forward a novel method for producing ultrarelativistic high-density high-polarization positrons through a single-shot interaction of a strong laser with a tilted solid foil. In our method, the driving laser ionizes the target, and the emitted electrons are accelerated and subsequently generate abundant γ photons via the nonlinear Compton scattering, dominated by the laser. These γ photons then generate polarized positrons via the nonlinear Breit-Wheeler process, dominated by a strong self-generated quasistatic magnetic field B^{S}. We find that placing the foil at an appropriate angle can result in a directional orientation of B^{S}, thereby polarizing positrons. Manipulating the laser polarization direction can control the angle between the γ photon polarization and B^{S}, significantly enhancing the positron polarization degree. Our spin-resolved quantum electrodynamics particle-in-cell simulations demonstrate that employing a laser with a peak intensity of about 10^{23} W/cm^{2} can obtain dense (≳10^{18} cm^{-3}) polarized positrons with an average polarization degree of about 70% and a yield of above 0.1 nC per shot. Moreover, our method is feasible using currently available or upcoming laser facilities and robust with respect to the laser and target parameters. Such high-density high-polarization positrons hold great significance in laboratory astrophysics, high-energy physics, and new physics beyond the standard model.
Collapse
Affiliation(s)
- Kun Xue
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ting Sun
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ke-Jia Wei
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhong-Peng Li
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhao
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Wan
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chong Lv
- Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(7), Beijing 102413, China
| | - Yong-Tao Zhao
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhong-Feng Xu
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Xing Li
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(7), Beijing 102413, China
| |
Collapse
|
3
|
Gong Z, Hatsagortsyan KZ, Keitel CH. Electron Polarization in Ultrarelativistic Plasma Current Filamentation Instabilities. PHYSICAL REVIEW LETTERS 2023; 130:015101. [PMID: 36669225 DOI: 10.1103/physrevlett.130.015101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plasma current filamentation of an ultrarelativistic electron beam impinging on an overdense plasma is investigated, with emphasis on radiation-induced electron polarization. Particle-in-cell simulations provide the classification and in-depth analysis of three different regimes of the current filaments, namely, the normal filament, abnormal filament, and quenching regimes. We show that electron radiative polarization emerges during the instability along the azimuthal direction in the momentum space, which significantly varies across the regimes. We put forward an intuitive Hamiltonian model to trace the origin of the electron polarization dynamics. In particular, we discern the role of nonlinear transverse motion of plasma filaments, which induces asymmetry in radiative spin flips, yielding an accumulation of electron polarization. Our results break the conventional perception that quasisymmetric fields are inefficient for generating radiative spin-polarized beams, suggesting the potential of electron polarization as a source of new information on laboratory and astrophysical plasma instabilities.
Collapse
Affiliation(s)
- Zheng Gong
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
4
|
Song HH, Wang WM, Li YT. Dense Polarized Positrons from Laser-Irradiated Foil Targets in the QED Regime. PHYSICAL REVIEW LETTERS 2022; 129:035001. [PMID: 35905344 DOI: 10.1103/physrevlett.129.035001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Many works have shown that dense positrons can be effectively generated from laser-solid interactions in the strong-field quantum electrodynamics (QED) regime. Whether these positrons are polarized has not yet been reported, limiting their potential applications. Here, by polarized QED particle-in-cell simulations including electron-positron spin and photon polarization effects, we investigate a typical laser-solid setup that an ultraintense linearly polarized laser irradiates a foil target with micrometer-scale-length preplasmas. We find that once the positron yield becomes appreciable with the laser intensity exceeding 10^{24} W/cm^{2}, the positrons are obviously polarized. Around 30 nC positrons can acquire >30% polarization degree with a flux of 10^{12} sr^{-1}. The angle-dependent polarization is attributed to the asymmetrical laser fields that positrons undergo near the skin layer of overdense plasmas, where radiative spin flip and radiation reaction play significant roles. The polarization mechanism is robust and could generally appear in future 100-PW-class laser-solid experiments.
Collapse
Affiliation(s)
- Huai-Hang Song
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Min Wang
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Tong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
5
|
Li YF, Chen YY, Hatsagortsyan KZ, Keitel CH. Helicity Transfer in Strong Laser Fields via the Electron Anomalous Magnetic Moment. PHYSICAL REVIEW LETTERS 2022; 128:174801. [PMID: 35570418 DOI: 10.1103/physrevlett.128.174801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Electron beam longitudinal polarization during the interaction with counterpropagating circularly polarized ultraintense laser pulses is investigated, while accounting for the anomalous magnetic moment of the electron. Although it is known that the helicity transfer from the laser photons to the electron beam is suppressed in linear and nonlinear Compton scattering processes, we show that the helicity transfer nevertheless can happen via an intermediate step of the electron radiative transverse polarization, phase matched with the driving field, followed up by spin rotation into the longitudinal direction as induced by the anomalous magnetic moment of the electron. With spin-resolved QED Monte Carlo simulations, we demonstrate the consequent helicity transfer from laser photons to the electron beam with a degree up to 10%, along with an electron radial polarization up to 65% after multiple photon emissions in a femtosecond timescale. This effect is detectable with currently achievable laser facilities, evidencing the role of the leading QED vertex correction to the electron anomalous magnetic moment in the polarization dynamics in ultrastrong laser fields.
Collapse
Affiliation(s)
- Yan-Fei Li
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue-Yue Chen
- Department of Physics, Shanghai Normal University, Shanghai 200234, China
| | | | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
6
|
Xue K, Guo RT, Wan F, Shaisultanov R, Chen YY, Xu ZF, Ren XG, Hatsagortsyan KZ, Keitel CH, Li JX. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
7
|
Gong Z, Hatsagortsyan KZ, Keitel CH. Retrieving Transient Magnetic Fields of Ultrarelativistic Laser Plasma via Ejected Electron Polarization. PHYSICAL REVIEW LETTERS 2021; 127:165002. [PMID: 34723572 DOI: 10.1103/physrevlett.127.165002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Interaction of an ultrastrong short laser pulse with nonprepolarized near-critical density plasma is investigated in an ultrarelativistic regime, with an emphasis on the radiative spin polarization of ejected electrons. Our particle-in-cell simulations show explicit correlations between the angle resolved electron polarization and the structure and properties of the transient quasistatic plasma magnetic field. While the magnitude of the spin signal is the indicator of the magnetic field strength created by the longitudinal electron current, the asymmetry of electron polarization is found to gauge the islandlike magnetic distribution which emerges due to the transverse current induced by the laser wave front. Our studies demonstrate that the spin degree of freedom of ejected electrons could potentially serve as an efficient tool to retrieve the features of strong plasma fields.
Collapse
Affiliation(s)
- Zheng Gong
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
8
|
Li XF, Gibbon P, Hützen A, Büscher M, Weng SM, Chen M, Sheng ZM. Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas. Phys Rev E 2021; 104:015216. [PMID: 34412274 DOI: 10.1103/physreve.104.015216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/08/2021] [Indexed: 11/07/2022]
Abstract
The production of polarized proton beams with multi-GeV energies in ultraintense laser interaction with targets is studied with three-dimensional particle-in-cell simulations. A near-critical density plasma target with prepolarized proton and tritium ions is considered for the proton acceleration. The prepolarized protons are initially accelerated by laser radiation pressure before injection and further acceleration in a bubblelike wakefield. The temporal dynamics of proton polarization is tracked via the Thomas-Bargmann-Michel-Telegdi equation and it is found that the proton polarization state can be altered by both the laser field and the magnetic component of the wakefield. The dependence of the proton acceleration and polarization on the ratio of the ion species is determined and it is found that the protons can be efficiently accelerated as long as their relative fraction is less than 20%, in which case the bubble size is large enough for the protons to obtain sufficient energy to overcome the bubble injection threshold.
Collapse
Affiliation(s)
- X F Li
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany.,Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - P Gibbon
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany.,Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - A Hützen
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - M Büscher
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - S M Weng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - M Chen
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Z M Sheng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.,SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom.,Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Li YF, Chen YY, Wang WM, Hu HS. Production of Highly Polarized Positron Beams via Helicity Transfer from Polarized Electrons in a Strong Laser Field. PHYSICAL REVIEW LETTERS 2020; 125:044802. [PMID: 32794799 DOI: 10.1103/physrevlett.125.044802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/17/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The production of a highly polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated theoretically. A new Monte Carlo method employing fully spin-resolved quantum probabilities is developed under the local constant field approximation to include three-dimensional polarization effects in strong laser fields. The produced positrons are longitudinally polarized through polarization transferred from the polarized electrons by the medium of high-energy photons. The polarization transfer efficiency can approach 100% for the energetic positrons moving at smaller deflection angles. This method simplifies the postselection procedure to generate high-quality positron beams in further applications. In a feasible scenario, a highly polarized (40%-65%), intense (10^{5}-10^{6}/bunch), collimated (5-70 mrad) positron beam can be obtained in a femtosecond timescale. The longitudinally polarized positron sources are desirable for applications in high-energy physics and material science.
Collapse
Affiliation(s)
- Yan-Fei Li
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue-Yue Chen
- Department of Physics, Shanghai Normal University, Shanghai 200234, China
| | - Wei-Min Wang
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Si Hu
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|