1
|
Desgranges C, Delhommelle J. Accelerated convergence via adiabatic sampling for adsorption and desorption processes. J Chem Phys 2024; 161:104104. [PMID: 39248234 DOI: 10.1063/5.0223486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Under isothermal conditions, phase transitions occur through a nucleation event when conditions are sufficiently close to coexistence. The formation of a nucleus of the new phase requires the system to overcome a free energy barrier of formation, whose height rapidly rises as supersaturation decreases. This phenomenon occurs both in the bulk and under confinement and leads to a very slow kinetics for the transition, ultimately resulting in hysteresis, where the system can remain in a metastable state for a long time. This has broad implications, for instance, when using simulations to predict phase diagrams or screen porous materials for gas storage applications. Here, we leverage simulations in an adiabatic statistical ensemble, known as adiabatic grand-isochoric ensemble (μ, V, L) ensemble, to reach equilibrium states with a greater efficiency than its isothermal counterpart, i.e., simulations in the grand-canonical ensemble. For the bulk, we show that at low supersaturation, isothermal simulations converge slowly, while adiabatic simulations exhibit a fast convergence over a wide range of supersaturation. We then focus on adsorption and desorption processes in nanoporous materials, assess the reliability of (μ, V, L) simulations on the adsorption of argon in IRMOF-1, and demonstrate the efficiency of adiabatic simulations to predict efficiently the equilibrium loading during the adsorption and desorption of argon in MCM-41, a system that exhibits significant hysteresis. We provide quantitative measures of the increased rate of convergence when using adiabatic simulations. Adiabatic simulations explore a wide temperature range, leading to a more efficient exploration of the configuration space.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, USA
| |
Collapse
|
2
|
Zhang Q, Li J, Wang Z, Wang J. Controlling polymorph selection during nucleation by tuning the structure of metallic melts. Phys Chem Chem Phys 2023; 25:25480-25491. [PMID: 37712292 DOI: 10.1039/d3cp02837b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Controlling the polymorphism of crystals is crucial to the design of novel metallic materials with specific properties; however, the atomistic mechanism underlying polymorph selection during crystallization remains unclear. In this work, molecular dynamics simulations combined with well-tempered metadynamics simulations are employed to explore the atomic mechanisms of polymorph selection during the nucleation process of FCC aluminum and copper. Simulation results suggest that the distinct nucleation pathways of both FCC metals originate from different free-energy surfaces of nucleation processes and diverse symmetries of nucleation precursors. The initially forming phase from undercooled melts is most likely to be the one that has the symmetry closest to the precursors. Besides, tiny seeds with diverse crystal symmetries could induce the formation of preordered precursors for nucleation around the seed, leading to the reduction of free-energy barrier and thus the promotion of nucleation. Controlling polymorph selection with tiny seeds is realized by tuning the symmetry of precursors. Our findings not only shed significant light on understanding polymorph selection, but also provide theoretical guidance for better controlling the nucleation pathway in practice.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Junjie Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
3
|
Lam J, Pietrucci F. Critical comparison of general-purpose collective variables for crystal nucleation. Phys Rev E 2023; 107:L012601. [PMID: 36797915 DOI: 10.1103/physreve.107.l012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The nucleation of crystals is a prominent phenomenon in science and technology that still lacks a full atomic-scale understanding. Much work has been devoted to identifying order parameters able to track the process, from the inception of early nuclei to their maturing to critical size until growth of an extended crystal. We critically assess and compare two powerful distance-based collective variables, an effective entropy derived from liquid state theory and the path variable based on permutation invariant vectors using the Kob-Andersen binary mixture and a combination of enhanced-sampling techniques. Our findings reveal a comparable ability to drive nucleation when a bias potential is applied, and comparable free-energy barriers and structural features. Yet, we also found an imperfect correlation with the committor probability on the barrier top which was bypassed by changing the order parameter definition.
Collapse
Affiliation(s)
- Julien Lam
- CEMES, Centre National de la Recherche Scientifique and Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
- Université Lille, Centre National de la Recherche Scientifique, INRA, ENSCL, UMR 8207, UMET, Unité Matériaux et Transformations, F 59000 Lille, France
| | - Fabio Pietrucci
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7590, IMPMC, 75005 Paris, France
| |
Collapse
|
4
|
Nie C, Peng F, Cao R, Cui K, Sheng J, Chen W, Li L. Recent progress in flow‐induced polymer crystallization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cui Nie
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Fan Peng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Renkuan Cao
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Kunpeng Cui
- Department of Polymer Science and Engineering, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film University of Science and Technology of China Hefei China
| | - Junfang Sheng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Wei Chen
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| | - Liangbin Li
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei China
| |
Collapse
|
5
|
Hu YC, Tanaka H. Revealing the role of liquid preordering in crystallisation of supercooled liquids. Nat Commun 2022; 13:4519. [PMID: 35927419 PMCID: PMC9352720 DOI: 10.1038/s41467-022-32241-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
The recent discovery of non-classical crystal nucleation pathways has revealed the role of fluctuations in the liquid structural order, not considered in classical nucleation theory. On the other hand, classical crystal growth theory states that crystal growth is independent of interfacial energy, but this is questionable. Here we elucidate the role of liquid structural ordering in crystal nucleation and growth using computer simulations of supercooled liquids. We find that suppressing the crystal-like structural order in the supercooled liquid through a new order-killing strategy can reduce the crystallisation rate by several orders of magnitude. This indicates that crystal-like liquid preordering and the associated interfacial energy reduction play an essential role in nucleation and growth processes, forcing critical modifications of the classical crystal growth theory. Furthermore, we evaluate the importance of this additional factor for different types of liquids. These findings shed new light on the fundamental understanding of crystal growth kinetics.
Collapse
Affiliation(s)
- Yuan-Chao Hu
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan. .,Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
6
|
Desgranges C, Delhommelle J. Entropy determination for mixtures in the adiabatic grand-isobaric ensemble. J Chem Phys 2022; 156:084113. [DOI: 10.1063/5.0083458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The entropy change that occurs upon mixing two fluids has remained an intriguing topic since the dawn of statistical mechanics. In this work, we generalize the grand-isobaric ensemble to mixtures and develop a Monte Carlo algorithm for the rapid determination of entropy in these systems. A key advantage of adiabatic ensembles is the direct connection they provide with entropy. Here, we show how the entropy of a binary mixture A–B can be readily obtained in the adiabatic grand-isobaric ( μA, μB, P, R) ensemble, in which μA and μB denote the chemical potential of components A and B, respectively, P is the pressure, and R is the heat (Ray) function, that corresponds to the total energy of the system. This, in turn, allows for the evaluation of the entropy of mixing and the Gibbs free energy of mixing. We also demonstrate that our approach performs very well both on systems modeled with simple potentials and with complex many-body force fields. Finally, this approach provides a direct route to the determination of the thermodynamic properties of mixing and allows for the efficient detection of departures from ideal behavior in mixtures.
Collapse
Affiliation(s)
- Caroline Desgranges
- MetaSimulation of Nonequilibrium Processes (MSNEP), Tech Accelerator, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- MetaSimulation of Nonequilibrium Processes (MSNEP), Tech Accelerator, University of North Dakota, Grand Forks, North Dakota 58202, USA
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, North Dakota 58202, USA
- School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
7
|
Machine-Learned Free Energy Surfaces for Capillary Condensation and Evaporation in Mesopores. ENTROPY 2022; 24:e24010097. [PMID: 35052123 PMCID: PMC8774451 DOI: 10.3390/e24010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022]
Abstract
Using molecular simulations, we study the processes of capillary condensation and capillary evaporation in model mesopores. To determine the phase transition pathway, as well as the corresponding free energy profile, we carry out enhanced sampling molecular simulations using entropy as a reaction coordinate to map the onset of order during the condensation process and of disorder during the evaporation process. The structural analysis shows the role played by intermediate states, characterized by the onset of capillary liquid bridges and bubbles. We also analyze the dependence of the free energy barrier on the pore width. Furthermore, we propose a method to build a machine learning model for the prediction of the free energy surfaces underlying capillary phase transition processes in mesopores.
Collapse
|
8
|
Nie C, Peng F, Xu T, Ding Y, Sheng J, Chen W, Li L. Biaxial Stretch-Induced Crystallization of Polymers: A Molecular Dynamics Simulation Study. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cui Nie
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Fan Peng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Tingyu Xu
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yiwei Ding
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Junfang Sheng
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liangbin Li
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Desgranges C, Delhommelle J. Entropy scaling close to criticality: From simple to metallic systems. Phys Rev E 2021; 103:052102. [PMID: 34134262 DOI: 10.1103/physreve.103.052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/09/2021] [Indexed: 11/07/2022]
Abstract
Entropy has recently drawn considerable interest both as a marker to detect the onset of phase transitions and as a reaction coordinate, or collective variable, to span phase transition pathways. We focus here on the behavior of entropy along the vapor-liquid phase coexistence and identify how the difference in entropy between the two coexisting phases vary in ideal and metallic systems along the coexistence curve. Using flat-histogram simulations, we determine the thermodynamic conditions of coexistence, critical parameters, including the critical entropy, and entropies along the binodal. We then apply our analysis to a series of systems that increasingly depart from ideality and adopt a metal-like character, through the gradual onset of the Friedel oscillation in an effective pair potential, and for a series of transition metals modeled with a many-body embedded-atoms force field. Projections of the phase boundary on the entropy-pressure and entropy-temperature planes exhibit two qualitatively different behaviors. While all systems modeled with an effective pair potential lead to an ideal-like behavior, the onset of many-body effects results in a departure from ideality and a markedly greater exponent for the variation of the entropy of vaporization with temperature away from the critical temperature.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
10
|
Li Y, Peng P, Xu D, Yang R. Identification of critical nuclei in the rapid solidification via configuration heredity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:175701. [PMID: 33508806 DOI: 10.1088/1361-648x/abe0e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The identification and characterization of critical nuclei is a long-standing issue in the rapid solidification of metals and alloys. An ambiguous description for their sizes and shapes used to lead to an overestimation or underestimation of homogeneous nucleation ratesITin the framework of classical nucleation theory (CNT). In this paper, a unique method able to distinguish the critical nucleus from numerous embryos is put forward on the basis of configuration heredities of clusters during rapid solidifications. As this technique is applied to analyze the formation and evolution of various fcc-Al single crystal clusters in a large-scale molecular dynamics simulation system, it is found that the sizencand geometrical configuration of critical nuclei as well as their liquid-solid interfacial structure can be determined directly. For the present deep super-cooled system with an undercooling ofTm=0.42Tmcal, the average size of critical nuclei is demonstrated to benc̄≈26, but most of which are non-spherical lamellae. Also, their liquid-solid interfaces are revealed to be not an fcc-liquid duplex-phase interface but an fcc/hcp-liquid multi-phase structure. These findings shed some lights on the CNT, and a good agreement with previous simulations and experiments inITindicates this technique can be used to explore the early-stage of nucleation from atomistic levels.
Collapse
Affiliation(s)
- Yuan Li
- School of Material Science & Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ping Peng
- School of Material Science & Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Dongsheng Xu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| |
Collapse
|
11
|
Eslami H, Gharibi A, Müller-Plathe F. Mechanisms of Nucleation and Solid-Solid-Phase Transitions in Triblock Janus Assemblies. J Chem Theory Comput 2021; 17:1742-1754. [PMID: 33529019 DOI: 10.1021/acs.jctc.0c01080] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A model, including the chemical details of core nanoparticles as well as explicit surface charges and hydrophobic patches, of triblock Janus particles is employed to simulate nucleation and solid-solid phase transitions in two-dimensional layers. An explicit solvent and a substrate are included in the model, and hydrodynamic and many-body interactions were taken into account within many-body dissipative particle dynamics simulation. In order not to impose a mechanism a priori, we performed free (unbiased) simulations, leaving the system the freedom to choose its own pathways. In agreement with the experiment and previous biased simulations, a two-step mechanism for the nucleation of a kagome lattice from solution was detected. However, a distinct feature of the present unbiased versus biased simulations is that multiple nuclei emerge from the solution; upon their growth, the aligned and misaligned facets at the grain boundaries are introduced into the system. The liquid-like particles trapped between the neighboring nuclei connect them together. A mismatch in the symmetry planes of neighboring nuclei hinders the growth of less stable (smaller) nuclei. Unification of such nuclei at the grain boundaries of misaligned facets obeys a two-step mechanism: melting of the smaller nuclei, followed by subsequent nucleation of liquid-like particles at the interface of bigger neighboring nuclei. Besides, multiple postcritical nuclei are formed in the simulation box; the growth of some of which stops due to introduction of a strain in the system. Such an incomplete nucleation/growth mechanism is in complete agreement with the recent experiments. The solid-solid (hexagonal-to-kagome) phase transition, at weak superheatings, obeys a two-step mechanism: a slower step (formation of a liquid droplet), followed by a faster step (nucleation of kagome from the liquid droplet).
Collapse
Affiliation(s)
- Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany.,Department of Chemistry, College of Sciences, Persian Gulf University, 75168 Boushehr, Iran
| | - Ali Gharibi
- Department of Chemistry, College of Sciences, Persian Gulf University, 75168 Boushehr, Iran
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
12
|
Hu YC, Tanaka H. Physical origin of glass formation from multicomponent systems. SCIENCE ADVANCES 2020; 6:6/50/eabd2928. [PMID: 33310854 PMCID: PMC7732196 DOI: 10.1126/sciadv.abd2928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
The origin of glass formation is one of the most fundamental issues in glass science. The glass-forming ability (GFA) of multicomponent systems, such as metallic glasses and phase-change materials, can be enormously changed by slight modifications of the constituted elements and compositions. However, its physical origin remains mostly unknown. Here, by molecular dynamics simulations, we study three model metallic systems with distinct GFA. We find that they have a similar driving force of crystallization, but a different liquid-crystal interface tension, indicating that the latter dominates the GFA. Furthermore, we show that the interface tension is determined by nontrivial coupling between structural and compositional orderings and affects crystal growth. These facts indicate that the classical theories of crystallization need critical modifications by considering local ordering effects. Our findings provide fresh insight into the physical control of GFA of metallic alloys and the switching speed of phase-change materials without relying on experience.
Collapse
Affiliation(s)
- Yuan-Chao Hu
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
13
|
Affiliation(s)
- Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
14
|
Amodeo J, Pietrucci F, Lam J. Out-of-Equilibrium Polymorph Selection in Nanoparticle Freezing. J Phys Chem Lett 2020; 11:8060-8066. [PMID: 32880462 DOI: 10.1021/acs.jpclett.0c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to design synthesis processes that are out of equilibrium has opened the possibility of creating nanomaterials with remarkable physicochemical properties, choosing from a much richer palette of possible atomic architectures compared to equilibrium processes in extended systems. In this work, we employ atomistic simulations to demonstrate how to control polymorph selection via the cooling rate during nanoparticle freezing in the case of Ni3Al, a material with a rich structural landscape. State-of-the-art free-energy calculations allow us to rationalize the complex nucleation process, discovering a switch between two kinetic pathways, yielding the equilibrium structure at room temperature and an alternative metastable one at higher temperature. Our findings address the key challenge in the synthesis of nanoalloys for technological applications, i.e., rationally exploiting the competition between kinetics and thermodynamics by designing a treatment history that forces the system into desirable metastable states.
Collapse
Affiliation(s)
- Jonathan Amodeo
- Université de Lyon, INSA-Lyon, MATEIS, UMR 5510 CNRS, 69621 Villeurbanne, France
| | - Fabio Pietrucci
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
15
|
Desgranges C, Delhommelle J. The central role of entropy in adiabatic ensembles and its application to phase transitions in the grand-isobaric adiabatic ensemble. J Chem Phys 2020; 153:094114. [PMID: 32891099 DOI: 10.1063/5.0021488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Entropy has become increasingly central to characterize, understand, and even guide assembly, self-organization, and phase transition processes. In this work, we build on the analogous role of partition functions (or free energies) in isothermal ensembles and that of entropy in adiabatic ensembles. In particular, we show that the grand-isobaric adiabatic (μ, P, R) ensemble, or Ray ensemble, provides a direct route to determine the entropy. This allows us to follow the variations of entropy with the thermodynamic conditions and thus explore phase transitions. We test this approach by carrying out Monte Carlo simulations on argon and copper in bulk phases and at phase boundaries. We assess the reliability and accuracy of the method through comparisons with the results from flat-histogram simulations in isothermal ensembles and with the experimental data. Advantages of the approach are multifold and include the direct determination of the μ-P relation, without any evaluation of pressure via the virial expression, the precise control of the system size (number of atoms) via the input value of R, and the straightforward computation of enthalpy differences for isentropic processes, which are key quantities to determine the efficiency of thermodynamic cycles. A new insight brought by these simulations is the highly symmetric pattern exhibited by both systems along the transition, as shown by scaled temperature-entropy and pressure-entropy plots.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
16
|
Kumar R, Singh AK. Electronic Structure Based Intuitive Design Principle of Single‐Atom Catalysts for Efficient Electrolytic Nitrogen Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000902] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ritesh Kumar
- Materials Research Centre Indian Institute of Science C. V. Raman Road Bangalore 560012 Karnataka India
| | - Abhishek K. Singh
- Materials Research Centre Indian Institute of Science C. V. Raman Road Bangalore 560012 Karnataka India
| |
Collapse
|