1
|
Pu D, Panahi A, Natale G, Benneker AM. Colloid thermophoresis in surfactant solutions: Probing colloid-solvent interactions through microscale experiments. J Chem Phys 2024; 161:104701. [PMID: 39248240 DOI: 10.1063/5.0224865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Thermophoresis has emerged as a powerful tool for characterizing and manipulating colloids at the nano- and micro-scales due to its sensitivity to colloid-solvent interactions. The use of surfactants enables the tailoring of surface chemistry on colloidal particles and the tuning of interfacial interactions. However, the microscopic mechanisms underlying thermophoresis in surfactant solutions remain poorly understood due to the complexity of multiscale interaction coupling. To achieve a more fundamental understanding of the roles of surfactants, we investigated the thermophoretic behavior of silica beads in both ionic and nonionic surfactant solutions at various background temperatures. We provide a complete mechanistic picture of the effects of surfactants on interfacial interactions through mode-coupling analysis of both electrophoretic and thermophoretic experiments. Our results demonstrate that silica thermophoresis is predominantly governed by the dissociation of silanol functional groups at silica-water interfaces in nonionic surfactant solutions, while in ionic surfactant solutions, the primary mechanism driving silica thermophoresis is the adsorption of ionic surfactants onto the silica surface.
Collapse
Affiliation(s)
- Di Pu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amirreza Panahi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Anne M Benneker
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
2
|
Tang Q, Zhong L, Tang C, Huang Y. Unified theoretical framework for temperature regulation via phase transition. Phys Rev E 2024; 110:014112. [PMID: 39161013 DOI: 10.1103/physreve.110.014112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 08/21/2024]
Abstract
Phase transition usually consumes or releases energy to produce cooling or heating within different materials, providing a generalized framework for temperature regulation in practical applications. Because of the strong coupling between the enthalpy change in thermodynamics and heat-mass transfer kinetics, unveiling the mechanism of temperature regulation via the phase transition remains a great challenge. Here, we develop a new theoretical method by establishing a connection of enthalpy change from thermodynamics to phase transition dynamics to study evaporation-induced cooling as an example. Our new approach can spontaneously generate evaporative cooling at interfaces, and the predicted results are consistent with recent experiments. The evaporation-induced steady vapor is dictated by an anomalous cold-to-hot mass transfer through temperature-dependent chemical potentials, which enables temperature regulation inside liquids via a thermodynamic-kinetic interplay. Moreover, we show that a simple prohibition of heat exchange between liquids and reservoir can greatly enhance the cooling magnitude by a factor of 2∼4, which is highly dependent on the thermodynamics and kinetic coefficients of liquids. Our new method paves the way for exploration of cooling or heating induced by different phase transitions, such as evaporation, sublimation, or condensation, in a unified framework, which can significantly promote the development of temperature regulation by phase transitions.
Collapse
|
3
|
Pu D, Panahi A, Natale G, Benneker AM. A Mode-Coupling Model of Colloid Thermophoresis in Aqueous Systems: Temperature and Size Dependencies of the Soret Coefficient. NANO LETTERS 2024; 24:2798-2804. [PMID: 38408429 DOI: 10.1021/acs.nanolett.3c04861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Thermophoresis allows for the manipulation of colloids in systems containing a temperature gradient. A deep understanding of the phenomena at the molecular level allows for increased control and manipulation strategies. We developed a microscopic model revealing different coupling mechanisms for colloid thermophoresis under local thermodynamic equilibrium conditions. The model has been verified through comparison with a variety of previously published experimental data and shows good agreement across significantly different systems. We found five different temperature-dependent contributions to the Soret coefficient, two from bulk properties and three from interfacial interactions between the fluid medium and the colloid. Our analysis shows that the Soret coefficient for nanosized particles is governed by the competition between the electrostatic and hydration interfacial interactions, while bulk contributions become more pronounced for protein systems. This theory can be used as a guide to design thermophoretic transport, which is relevant for sensing, focusing, and separation at the microscale.
Collapse
Affiliation(s)
- Di Pu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive Northwest, Calgary T2N 1N4, Alberta, Canada
| | - Amirreza Panahi
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive Northwest, Calgary T2N 1N4, Alberta, Canada
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive Northwest, Calgary T2N 1N4, Alberta, Canada
| | - Anne M Benneker
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive Northwest, Calgary T2N 1N4, Alberta, Canada
| |
Collapse
|
4
|
Huang Y, Wu C, Dai J, Liu B, Cheng X, Li X, Cao Y, Chen J, Li Z, Tang J. Tunable Self-Thermophoretic Nanomotors with Polymeric Coating. J Am Chem Soc 2023; 145:19945-19952. [PMID: 37641545 DOI: 10.1021/jacs.3c06322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Thermophoretic micro/nanomotors (MNMs) generate self-propulsion without a chemical reaction. Intrinsically, this promises excellent biocompatibility and is thus suitable for biomedical applications. However, their propulsion efficiency is severely limited due to the poor understanding of the thermophoretic process, which dominates the conversion from thermal energy into mechanical movement. We here developed a series of self-thermophoresis light-powered MNMs with variable surface coatings and discovered obvious self-thermophoresis propulsion enhancement of the polymeric layer. An intrinsically negative self-thermophoretic movement is also observed for the first time in the MNM system. We propose that enthalpic contributions from polymer-solvent interactions should play a fundamental role in the self-thermophoretic MNMs. Quantitative microcalorimetry and molecular dynamics simulations are performed to support our hypothesis. The polymer solvation enthalpy and coating thickness influences on self-thermophoresis are investigated, further highlighting the essential enthalpy contributions to thermophoresis. Our work indicates that surface grafting would be important in designing high-efficiency thermally driven nanorobotic systems for biomedical applications.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jia Dai
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Biyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xiang Cheng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yingnan Cao
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
5
|
Hutchinson AJ, Torres JF, Corry B. Modeling thermodiffusion in aqueous sodium chloride solutions-Which water model is best? J Chem Phys 2022; 156:164503. [PMID: 35490021 DOI: 10.1063/5.0088325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thermodiffusion is the migration of a species due to a temperature gradient and is the driving phenomenon in many applications ranging from early cancer detection to uranium enrichment. Molecular dynamics (MD) simulations can be a useful tool for exploring the rather complex thermodiffusive behavior of species, such as proteins and ions. However, current MD models of thermodiffusion in aqueous ionic solutions struggle to quantitatively predict the Soret coefficient, which indicates the magnitude and direction of species migration under a temperature gradient. In this work, we aim to improve the accuracy of MD thermodiffusion models by assessing how well different water models can recreate thermodiffusion in a benchmark aqueous NaCl solution. We tested four of the best available rigid non-polarizable water models (TIP3P-FB, TIP4P-FB, OPC3, and OPC) and the commonly used TIP3P and SPC/E water models for their ability to predict the inversion temperature and Soret coefficient in 0.5, 2, and 4M aqueous NaCl solutions. Each water model predicted a noticeably different ion distribution yielding different inversion temperatures and magnitudes of the Soret coefficient. By comparing the modeled Soret coefficients to published experimental values, we determine TIP3P-FB to be the water model that best recreates thermodiffusion in aqueous NaCl solutions. Our findings can aid future works in selecting the most accurate rigid non-polarizable water model, including water and ion parameters for investigating thermodiffusion through MD simulations.
Collapse
Affiliation(s)
- Alice J Hutchinson
- Research School of Biology, Australian National University, Canberra, Australia
| | - Juan F Torres
- School of Engineering, Australian National University, Canberra, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
6
|
de Miguel R, Rubí JM. Statistical Mechanics at Strong Coupling: A Bridge between Landsberg's Energy Levels and Hill's Nanothermodynamics. NANOMATERIALS 2020; 10:nano10122471. [PMID: 33321739 PMCID: PMC7764728 DOI: 10.3390/nano10122471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022]
Abstract
We review and show the connection between three different theories proposed for the thermodynamic treatment of systems not obeying the additivity ansatz of classical thermodynamics. In the 1950s, Landsberg proposed that when a system comes into contact with a heat bath, its energy levels are redistributed. Based on this idea, he produced an extended thermostatistical framework that accounts for unknown interactions with the environment. A decade later, Hill devised his celebrated nanothermodynamics, where he introduced the concept of subdivision potential, a new thermodynamic variable that accounts for the vanishing additivity of increasingly smaller systems. More recently, a thermostatistical framework at strong coupling has been formulated to account for the presence of the environment through a Hamiltonian of mean force. We show that this modified Hamiltonian yields a temperature-dependent energy landscape as earlier suggested by Landsberg, and it provides a thermostatistical foundation for the subdivision potential, which is the cornerstone of Hill's nanothermodynamics.
Collapse
Affiliation(s)
- Rodrigo de Miguel
- Department of Teacher Education, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence: ; Tel.: +47-73412115
| | - J. Miguel Rubí
- Department of Condensed Matter Physics, University of Barcelona, 08007 Barcelona, Spain;
| |
Collapse
|
7
|
Strong Coupling and Nonextensive Thermodynamics. ENTROPY 2020; 22:e22090975. [PMID: 33286744 PMCID: PMC7597282 DOI: 10.3390/e22090975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 12/20/2022]
Abstract
We propose a Hamiltonian-based approach to the nonextensive thermodynamics of small systems, where small is a relative term comparing the size of the system to the size of the effective interaction region around it. We show that the effective Hamiltonian approach gives easy accessibility to the thermodynamic properties of systems strongly coupled to their surroundings. The theory does not rely on the classical concept of dividing surface to characterize the system’s interaction with the environment. Instead, it defines an effective interaction region over which a system exchanges extensive quantities with its surroundings, easily producing laws recently shown to be valid at the nanoscale.
Collapse
|
8
|
Affiliation(s)
- Xiaoyu Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zongwei Gan
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yuzhong Li
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
9
|
Arango-Restrepo A, Rubi JM. Role of Interfacial Entropy in the Particle-Size Dependence of Thermophoretic Mobility. PHYSICAL REVIEW LETTERS 2020; 125:045901. [PMID: 32794822 DOI: 10.1103/physrevlett.125.045901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
We show that changes in the surface tension of a particle due to the presence of nonionic surfactants and impurities, which alter the interfacial entropy, have an impact on the value of the thermophoretic mobility. We have found the existence of different behaviors of this quantity in terms of particle size which can be summarized through a power law. For particles that are small enough, the thermophoretic mobility is a constant, whereas for larger particles it is linear in the particle radius. These results show the important role of the interfacial entropic effects on the behavior of the thermophoretic mobility.
Collapse
Affiliation(s)
- A Arango-Restrepo
- Departament de Física de la Matéria Condensada, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| | - J M Rubi
- Departament de Física de la Matéria Condensada, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|