1
|
Hasegawa H, Denton RE, Dokgo K, Hwang K, Nakamura TKM, Burch JL. Ion-Scale Magnetic Flux Rope Generated From Electron-Scale Magnetopause Current Sheet: Magnetospheric Multiscale Observations. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2023; 128:e2022JA031092. [PMID: 38440152 PMCID: PMC10909477 DOI: 10.1029/2022ja031092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/06/2024]
Abstract
We present in-depth analysis of three southward-moving meso-scale (ion-to magnetohydrodynamic-scale) flux transfer events (FTEs) and subsequent crossing of a reconnecting magnetopause current sheet (MPCS), which were observed on 8 December 2015 by the Magnetospheric Multiscale spacecraft in the subsolar region under southward and duskward magnetosheath magnetic field conditions. We aim to understand the generation mechanism of ion-scale magnetic flux ropes (ISFRs) and to reveal causal relationship among magnetic field structures, electromagnetic energy conversion, and kinetic processes in magnetic reconnection layers. Results from magnetic field reconstruction methods are consistent with a flux rope with a length of about one ion inertial length growing from an electron-scale current sheet (ECS) in the MPCS, supporting the idea that ISFRs can be generated through secondary reconnection in an ECS. Grad-Shafranov reconstruction applied to the three FTEs shows that the FTEs had axial orientations similar to that of the ISFR. This suggests that these FTEs also formed through the same secondary reconnection process, rather than multiple X-line reconnection at spatially separated locations. Four-spacecraft observations of electron pitch-angle distributions and energy conversion rate j · E ' = j · E + v e × B suggest that the ISFR had three-dimensional magnetic topology and secondary reconnection was patchy or bursty. Previously reported positive and negative values of j · E ' , with magnitudes much larger than expected for typical MP reconnection, were seen in both magnetosheath and magnetospheric separatrix regions of the ISFR. Many of them coexisted with bi-directional electron beams and intense electric field fluctuations around the electron gyrofrequency, consistent with their origin in separatrix activities.
Collapse
Affiliation(s)
- H. Hasegawa
- Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
- Southwest Research InstituteSan AntonioTXUSA
| | - R. E. Denton
- Department of Physics and AstronomyDartmouth CollegeHanoverNHUSA
| | - K. Dokgo
- Southwest Research InstituteSan AntonioTXUSA
| | - K.‐J. Hwang
- Southwest Research InstituteSan AntonioTXUSA
| | | | - J. L. Burch
- Southwest Research InstituteSan AntonioTXUSA
| |
Collapse
|
2
|
Song HH, Wang WM, Wang JQ, Li YT, Zhang J. Low-frequency whistler waves excited by relativistic laser pulses. Phys Rev E 2020; 102:053204. [PMID: 33327142 DOI: 10.1103/physreve.102.053204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
It is shown by multidimensional particle-in-cell simulations that intense secondary whistler waves with special vortexlike field topology can be excited by a relativistic laser pulse in the highly magnetized, near-critical density plasma. Such whistler waves with lower frequencies obliquely propagate on both sides of the laser propagation axis. The energy conversion rate from laser to whistler waves can exceed 15%. Their dispersion relations and field polarization properties can be well explained by the linear cold-plasma model. The present work presents a new excitation mechanism of whistler modes extending to the relativistic regime and could also be applied in magnetically assisted fast ignition.
Collapse
Affiliation(s)
- Huai-Hang Song
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Min Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.,Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia-Qi Wang
- College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
| | - Yu-Tong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jie Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory for Laser Plasmas, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|