1
|
Sarkar S, Dubi Y. Time Crystals from Single-Molecule Magnet Arrays. ACS NANO 2024; 18:27988-27996. [PMID: 39360445 DOI: 10.1021/acsnano.4c05817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Time crystals, a unique nonequilibrium quantum phenomenon with promising applications in current quantum technologies, mark a significant advance in quantum mechanics. Although traditionally studied in atom-cavity and optical lattice systems, pursuing alternative nanoscale platforms for time crystals is crucial. Here we theoretically predict discrete time crystals in a periodically driven molecular magnet array, modeled by a spin-S Heisenberg Hamiltonian with significant quadratic anisotropy, taken with realistic and experimentally relevant physical parameters. Surprisingly, we find that the time crystal response frequency correlates with the energy levels of the individual magnets and is essentially independent of the exchange coupling. The latter is unexpectedly manifested through a pulse-like oscillation in the magnetization envelope, signaling a many-body response. These results show that molecular magnets can be a rich platform for studying time-crystalline behavior and possibly other out-of-equilibrium quantum many-body dynamics.
Collapse
Affiliation(s)
- Subhajit Sarkar
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
- Institute of Theoretical Physics, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Yonatan Dubi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
2
|
Majidy S. Noncommuting charges can remove non-stationary quantum many-body dynamics. Nat Commun 2024; 15:8246. [PMID: 39304665 DOI: 10.1038/s41467-024-52588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Studying noncommuting conserved quantities, or 'charges,' has revealed a conceptual puzzle: noncommuting charges hinder thermalization in some ways yet promote it in others. While many quantum systems thermalize according to the Eigenstate Thermalization Hypothesis (ETH), systems with 'dynamical symmetries' violate the ETH and exhibit non-stationary dynamics, preventing them from equilibrating, much less thermalizing. We demonstrate that each pair of dynamical symmetries corresponds to a specific charge. We find that introducing new charges that do not commute with existing ones disrupts these symmetries, thereby eliminating non-stationary dynamics and facilitating thermalization. We illustrate this behavior across various models, including the Hubbard model and Heisenberg spin chains. Our findings demonstrate that noncommuting charges can enhance thermalization by reducing the number of local observables that thermalize according to the ETH.
Collapse
Affiliation(s)
- Shayan Majidy
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Li Y, Wang C, Tang Y, Liu YC. Time Crystal in a Single-Mode Nonlinear Cavity. PHYSICAL REVIEW LETTERS 2024; 132:183803. [PMID: 38759188 DOI: 10.1103/physrevlett.132.183803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/19/2024]
Abstract
Time crystal is a class of nonequilibrium phases with broken time-translational symmetry. Here, we demonstrate the time crystal in a single-mode nonlinear cavity. The time crystal originates from the self-oscillation induced by a linear gain and is stabilized by a nonlinear damping. We show in the time crystal phase there are sharp dissipative gap closing and pure imaginary eigenvalues of the Liouvillian spectrum in the thermodynamic limit. Dynamically, we observe a metastable regime with the emergence of quantum oscillation, followed by a dissipative evolution with a timescale much longer than the oscillating period. Moreover, we show there is a dissipative phase transition at the Hopf bifurcation, which can be characterized by the photon number fluctuation in the steady state. These results pave a new promising way for further experiments and deepen our understanding of time crystals.
Collapse
Affiliation(s)
- Yaohua Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Chenyang Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yuanjiang Tang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
4
|
Daviet R, Zelle CP, Rosch A, Diehl S. Nonequilibrium Criticality at the Onset of Time-Crystalline Order. PHYSICAL REVIEW LETTERS 2024; 132:167102. [PMID: 38701486 DOI: 10.1103/physrevlett.132.167102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
We explore the phase transitions at the onset of time-crystalline order in O(N) models driven out of equilibrium. The spontaneous breaking of time translation symmetry and its Goldstone mode are captured by an effective description with O(N)×SO(2) symmetry, where the emergent external SO(2) results from a transmutation of the internal symmetry of time translations. Using the renormalization group and the ε=4-d expansion in a leading two-loop analysis, we identify a new nonequilibrium universality class. Strikingly, it controls the long-distance physics no matter how small the microscopic breaking of equilibrium conditions is. The O(N=2)×SO(2) symmetry group is realized for magnon condensation in pumped yttrium iron garnet films and in exciton-polariton systems with a polarization degree of freedom.
Collapse
Affiliation(s)
- Romain Daviet
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
| | - Carl Philipp Zelle
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
| | - Achim Rosch
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
| | - Sebastian Diehl
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
| |
Collapse
|
5
|
Mivehvar F. Conventional and Unconventional Dicke Models: Multistabilities and Nonequilibrium Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:073602. [PMID: 38427881 DOI: 10.1103/physrevlett.132.073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
The Dicke model describes the collective behavior of a subwavelength-size ensemble of two-level atoms (i.e., spin-1/2) interacting identically with a single quantized radiation field of a cavity. Across a critical coupling strength it exhibits a zero-temperature phase transition from the normal state to the superradiant phase where the field is populated and the collective spin acquires a nonzero x component, which can be imagined as ferromagnetic ordering of the atomic spins along x. Here we introduce a variant of this model where two subwavelength-size ensembles of spins interact with a single quantized radiation field with different strengths. Subsequently, we restrict ourselves to a special case where the coupling strengths are opposite (which is unitarily equivalent to equal-coupling strengths). Because of the conservation of the total spin in each ensemble individually, the system supports two distinct superradiant states with x-ferromagnetic and x-ferrimagnetic spin ordering, coexisting with each other in a large parameter regime. The stability and dynamics of the system in the thermodynamic limit are examined using a semiclassical approach, which predicts nonstationary behaviors due to the multistabilities. At the end, we also perform small-scale full quantum-mechanical calculations, with results consistent with the semiclassical ones.
Collapse
Affiliation(s)
- Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Cabot A, Carollo F, Lesanovsky I. Continuous Sensing and Parameter Estimation with the Boundary Time Crystal. PHYSICAL REVIEW LETTERS 2024; 132:050801. [PMID: 38364170 DOI: 10.1103/physrevlett.132.050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
A boundary time crystal is a quantum many-body system whose dynamics is governed by the competition between coherent driving and collective dissipation. It is composed of N two-level systems and features a transition between a stationary phase and an oscillatory one. The fact that the system is open allows one to continuously monitor its quantum trajectories and to analyze their dependence on parameter changes. This enables the realization of a sensing device whose performance we investigate as a function of the monitoring time T and of the system size N. We find that the best achievable sensitivity is proportional to sqrt[T]N, i.e., it follows the standard quantum limit in time and Heisenberg scaling in the particle number. This theoretical scaling can be achieved in the oscillatory time-crystal phase and it is rooted in emergent quantum correlations. The main challenge is, however, to tap this capability in a measurement protocol that is experimentally feasible. We demonstrate that the standard quantum limit can be surpassed by cascading two time crystals, where the quantum trajectories of one time crystal are used as input for the other one.
Collapse
Affiliation(s)
- Albert Cabot
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Federico Carollo
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
7
|
Carollo F. Non-Gaussian Dynamics of Quantum Fluctuations and Mean-Field Limit in Open Quantum Central Spin Systems. PHYSICAL REVIEW LETTERS 2023; 131:227102. [PMID: 38101340 DOI: 10.1103/physrevlett.131.227102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
Central spin systems, in which a central spin is singled out and interacts nonlocally with several bath spins, are paradigmatic models for nitrogen-vacancy centers and quantum dots. They show complex emergent dynamics and stationary phenomena which, despite the collective nature of their interaction, are still largely not understood. Here, we derive exact results on the emergent behavior of open quantum central spin systems. The latter crucially depends on the scaling of the interaction strength with the bath size. For scalings with the inverse square root of the bath size (typical of one-to-many interactions), the system behaves, in the thermodynamic limit, as an open quantum Jaynes-Cummings model, whose bosonic mode encodes the quantum fluctuations of the bath spins. In this case, non-Gaussian correlations are dynamically generated and persist at stationarity. For scalings with the inverse bath size, the emergent dynamics is instead of mean-field type. Our Letter provides a fundamental understanding of the different dynamical regimes of central spin systems and a simple theory for efficiently exploring their nonequilibrium behavior. Our findings may become relevant for developing fully quantum descriptions of many-body solid-state devices and their applications.
Collapse
Affiliation(s)
- Federico Carollo
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Machado F, Zhuang Q, Yao NY, Zaletel MP. Absolutely Stable Time Crystals at Finite Temperature. PHYSICAL REVIEW LETTERS 2023; 131:180402. [PMID: 37977624 DOI: 10.1103/physrevlett.131.180402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/27/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
We show that locally interacting, periodically driven (Floquet) Hamiltonian dynamics coupled to a Langevin bath support finite-temperature discrete time crystals (DTCs) with an infinite autocorrelation time. By contrast to both prethermal and many-body localized DTCs, the time crystalline order we uncover is stable to arbitrary perturbations, including those that break the time translation symmetry of the underlying drive. Our approach utilizes a general mapping from probabilistic cellular automata to open classical Floquet systems undergoing continuous-time Langevin dynamics. Applying this mapping to a variant of the Toom cellular automaton, which we dub the "π-Toom time crystal," leads to a 2D Floquet Hamiltonian with a finite-temperature DTC phase transition. We provide numerical evidence for the existence of this transition, and analyze the statistics of the finite temperature fluctuations. Finally, we discuss how general results from the field of probabilistic cellular automata imply the existence of discrete time crystals (with an infinite autocorrelation time) in all dimensions, d≥1.
Collapse
Affiliation(s)
- Francisco Machado
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Quntao Zhuang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
- Ming Hsieh Department of Electrical and Computer Engineering and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Norman Y Yao
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Chiacchio EIR, Nunnenkamp A, Brunelli M. Nonreciprocal Dicke Model. PHYSICAL REVIEW LETTERS 2023; 131:113602. [PMID: 37774293 DOI: 10.1103/physrevlett.131.113602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/15/2023] [Indexed: 10/01/2023]
Abstract
We investigate the physics of an open two-component Dicke model, where the light field mediates nonreciprocal interactions between two spin species. We show that the model, which we dub nonreciprocal Dicke model, exhibits a discrete parity-time (PT) symmetry and we characterize the emergence of a nonstationary phase, so far explained in terms of dissipation-induced instability, as spontaneous breaking of PT symmetry. We further show that such PT symmetry breaking embodies an instance of a nonreciprocal phase transition, a concept recently introduced by Fruchart et al. [Nature (London) 592, 363 (2021)NATUAS0028-083610.1038/s41586-021-03375-9]. Remarkably, the phase transition in our model does not necessitate the presence of any underlying broken symmetry or exceptional points in the spectrum, both believed to be essential requirements for nonreciprocal phase transitions. Our results establish driven-dissipative light-matter systems as a new avenue for exploring nonreciprocal phase transitions and contribute to the theory of nonreciprocal collective phenomena.
Collapse
Affiliation(s)
| | - Andreas Nunnenkamp
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Matteo Brunelli
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Skulte J, Kongkhambut P, Rao S, Mathey L, Keßler H, Hemmerich A, Cosme JG. Condensate Formation in a Dark State of a Driven Atom-Cavity System. PHYSICAL REVIEW LETTERS 2023; 130:163603. [PMID: 37154637 DOI: 10.1103/physrevlett.130.163603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
We demonstrate the formation of a condensate in a dark state of momentum states, in a pumped and shaken cavity-BEC system. The system consists of an ultracold quantum gas in a high-finesse cavity, which is pumped transversely by a phase-modulated laser. This phase-modulated pumping couples the atomic ground state to a superposition of excited momentum states, which decouples from the cavity field. We demonstrate how to achieve condensation in this state, supported by time-of-flight and photon emission measurements. With this, we show that the dark state concept provides a general approach to efficiently prepare complex many-body states in an open quantum system.
Collapse
Affiliation(s)
- Jim Skulte
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Phatthamon Kongkhambut
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sahana Rao
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ludwig Mathey
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hans Keßler
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Andreas Hemmerich
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jayson G Cosme
- National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
11
|
Krishna M, Solanki P, Hajdušek M, Vinjanampathy S. Measurement-Induced Continuous Time Crystals. PHYSICAL REVIEW LETTERS 2023; 130:150401. [PMID: 37115890 DOI: 10.1103/physrevlett.130.150401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Strong measurements usually restrict the dynamics of measured finite dimensional systems to the Zeno subspace, where subsequent evolution is unitary due to the suppression of dissipative terms. Here, we show qualitatively different behavior induced by the competition between strong measurements and the thermodynamic limit, inducing a time-translation symmetry breaking phase transition resulting in a continuous time crystal. We consider an undriven spin star model, where the central spin is subject to a strong continuous measurement, and qualify the dynamic behavior of the system in various parameter regimes. We show that above a critical value of measurement strength, the magnetization of the thermodynamically large ancilla spins, along with the central spin, develops limit-cycle oscillations.
Collapse
Affiliation(s)
- Midhun Krishna
- Department of Physics, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Parvinder Solanki
- Department of Physics, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Michal Hajdušek
- Keio University Shonan Fujisawa Campus, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
- Keio University Quantum Computing Center, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan
| | - Sai Vinjanampathy
- Department of Physics, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
- Centre of Excellence in Quantum Information, Computation, Science and Technology, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
| |
Collapse
|
12
|
Bakker LR, Bahovadinov MS, Kurlov DV, Gritsev V, Fedorov AK, Krimer DO. Driven-Dissipative Time Crystalline Phases in a Two-Mode Bosonic System with Kerr Nonlinearity. PHYSICAL REVIEW LETTERS 2022; 129:250401. [PMID: 36608248 DOI: 10.1103/physrevlett.129.250401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
For the driven-dissipative system of two coupled bosonic modes in a nonlinear cavity resonator, we demonstrate a sequence of phase transitions from a trivial steady state to two distinct dissipative time crystalline phases. These effects are already anticipated at the level of the semiclassical analysis of the Lindblad equation using the theory of bifurcations and are further supported by the full quantum treatment. The system is predicted to exhibit different dynamical phases characterized by an oscillating nonequilibrium steady state with nontrivial periodicity, which is a hallmark of time crystals. We expect that these phases can be directly probed in various cavity QED experiments.
Collapse
Affiliation(s)
- L R Bakker
- Institute for Theoretical Physics, Universiteit van Amsterdam, Science Park 904, Amsterdam, Netherlands
- Russian Quantum Center, Skolkovo, Moscow 143025, Russia
| | - M S Bahovadinov
- Russian Quantum Center, Skolkovo, Moscow 143025, Russia
- Physics Department, National Research University Higher School of Economics, Moscow 101000, Russia
| | - D V Kurlov
- Russian Quantum Center, Skolkovo, Moscow 143025, Russia
| | - V Gritsev
- Institute for Theoretical Physics, Universiteit van Amsterdam, Science Park 904, Amsterdam, Netherlands
- Russian Quantum Center, Skolkovo, Moscow 143025, Russia
| | - A K Fedorov
- Russian Quantum Center, Skolkovo, Moscow 143025, Russia
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Dmitry O Krimer
- Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Wiedner Hauptstraße 8-10/136, A1040 Vienna, Austria
| |
Collapse
|
13
|
Self-oscillating pump in a topological dissipative atom-cavity system. Nature 2022; 608:494-498. [PMID: 35978131 DOI: 10.1038/s41586-022-04970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Pumps are transport mechanisms in which direct currents result from a cyclic evolution of the potential1,2. As Thouless showed, the pumping process can have topological origins, when considering the motion of quantum particles in spatially and temporally periodic potentials3. However, the periodic evolution that drives these pumps has always been assumed to be imparted from outside, as has been the case in the experimental systems studied so far4-12. Here we report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator, where we observe a particle current without applying a periodic drive. The pumping potential experienced by the atoms is formed by the self-consistent cavity field interfering with the static laser field driving the atoms. Owing to dissipation, the cavity field evolves between its two quadratures13, each corresponding to a different centrosymmetric crystal configuration14. This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models, such as the paradigmatic Rice-Mele pump15. In the experiment, we directly follow the evolution by measuring the phase winding of the cavity field with respect to the driving field and observing the atomic motion in situ. The observed mechanism combines the dynamics of topological and open systems, and features characteristics of continuous dissipative time crystals.
Collapse
|
14
|
Sarkar S, Dubi Y. Emergence and Dynamical Stability of a Charge Time-Crystal in a Current-Carrying Quantum Dot Simulator. NANO LETTERS 2022; 22:4445-4451. [PMID: 35580301 DOI: 10.1021/acs.nanolett.2c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Periodically driven open quantum systems that never thermalize exhibit a discrete time-crystal behavior, a nonequilibrium quantum phenomenon that has shown promise in quantum information processing applications. Measurements of time-crystallinity are currently limited to (magneto-) optical experiments in atom-cavity systems and spin-systems making it an indirect measurement. We theoretically show that time-crystallinity can be measured directly in the charge-current from a spin-less Hubbard ladder, which can be simulated on a quantum-dot array. We demonstrate that one can dynamically tune the system out and then back on a time-crystal phase, proving its robustness against external forcings. These findings motivate further theoretical and experimental efforts to simulate the time-crystal phenomena in current-carrying nanoscale systems.
Collapse
Affiliation(s)
- Subhajit Sarkar
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yonatan Dubi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
15
|
Lin R, Rosa-Medina R, Ferri F, Finger F, Kroeger K, Donner T, Esslinger T, Chitra R. Dissipation-Engineered Family of Nearly Dark States in Many-Body Cavity-Atom Systems. PHYSICAL REVIEW LETTERS 2022; 128:153601. [PMID: 35499900 DOI: 10.1103/physrevlett.128.153601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Three-level atomic systems coupled to light have the capacity to host dark states. We study a system of V-shaped three-level atoms coherently coupled to the two quadratures of a dissipative cavity. The interplay between the atomic level structure and dissipation makes the phase diagram of the open system drastically different from the closed one. In particular, it leads to the stabilization of a continuous family of dark and nearly dark excited many-body states with inverted atomic populations as the steady states. The multistability of these states can be probed via their distinct fluctuations and excitation spectra, as well as the system's Liouvillian dynamics which are highly sensitive to ramp protocols. Our model can be implemented experimentally by encoding the two higher-energy modes in orthogonal density-modulated states in a bosonic quantum gas. This implementation offers prospects for potential applications like the realization of quantum optical random walks and microscopy with subwavelength spatial resolution.
Collapse
Affiliation(s)
- Rui Lin
- Institute for Theoretical Physics, ETH Zürich, 8093 Zurich, Switzerland
| | | | - Francesco Ferri
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - Fabian Finger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - Katrin Kroeger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - Tobias Donner
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - Tilman Esslinger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - R Chitra
- Institute for Theoretical Physics, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Lozano-Méndez K, Cásares AH, Caballero-Benítez SF. Spin Entanglement and Magnetic Competition via Long-Range Interactions in Spinor Quantum Optical Lattices. PHYSICAL REVIEW LETTERS 2022; 128:080601. [PMID: 35275654 DOI: 10.1103/physrevlett.128.080601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Quantum matter at ultralow temperatures offers a test bed for analyzing and controlling desired properties in strongly correlated systems. Under typical conditions the nature of the atoms fixes the magnetic character of the system. Beyond classical light potentials leading to optical lattices and short-range interactions, high-Q cavities introduce novel dynamics into the system via the quantumness of light. Here we propose a theoretical model and we analyze it using exact diagonalization and density matrix renormalization group simulations. We explore the effects of cavity mediated long-range magnetic interactions and optical lattices in ultracold matter. We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios. Antiferromagnetic correlated bosonic matter emerges in conditions beyond what nature typically provides. These allow new alternatives toward the design of robust mechanisms for quantum information purposes, exploiting the properties of magnetic phases of strongly correlated quantum matter.
Collapse
Affiliation(s)
- Karen Lozano-Méndez
- Instituto de Física, LSCSC-LANMAC, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro H Cásares
- Instituto de Física, LSCSC-LANMAC, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | |
Collapse
|
17
|
Kongkhambut P, Keßler H, Skulte J, Mathey L, Cosme JG, Hemmerich A. Realization of a Periodically Driven Open Three-Level Dicke Model. PHYSICAL REVIEW LETTERS 2021; 127:253601. [PMID: 35029416 DOI: 10.1103/physrevlett.127.253601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
A periodically driven open three-level Dicke model is realized by resonantly shaking the pump field in an atom-cavity system. As an unambiguous signature, we demonstrate the emergence of a dynamical phase, in which the atoms periodically localize between the antinodes of the pump lattice, associated with an oscillating net momentum along the pump axis. We observe this dynamical phase through the periodic switching of the relative phase between the pump and cavity fields at a small fraction of the driving frequency, suggesting that it exhibits a time crystalline character.
Collapse
Affiliation(s)
- Phatthamon Kongkhambut
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hans Keßler
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Jim Skulte
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ludwig Mathey
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jayson G Cosme
- National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Andreas Hemmerich
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
18
|
Buonaiuto G, Carollo F, Olmos B, Lesanovsky I. Dynamical Phases and Quantum Correlations in an Emitter-Waveguide System with Feedback. PHYSICAL REVIEW LETTERS 2021; 127:133601. [PMID: 34623844 DOI: 10.1103/physrevlett.127.133601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
We investigate the creation and control of emergent collective behavior and quantum correlations using feedback in an emitter-waveguide system using a minimal model. Employing homodyne detection of photons emitted from a laser-driven emitter ensemble into the modes of a waveguide allows for the generation of intricate dynamical phases. In particular, we show the emergence of a time-crystal phase, the transition to which is controlled by the feedback strength. Feedback enables furthermore the control of many-body quantum correlations, which become manifest in spin squeezing in the emitter ensemble. Developing a theory for the dynamics of fluctuation operators we discuss how the feedback strength controls the squeezing and investigate its temporal dynamics and dependence on system size. The largely analytical results allow to quantify spin squeezing and fluctuations in the limit of large number of emitters, revealing critical scaling of the squeezing close to the transition to the time crystal. Our study corroborates the potential of integrated emitter-waveguide systems-which feature highly controllable photon emission channels-for the exploration of collective quantum phenomena and the generation of resources, such as squeezed states, for quantum enhanced metrology.
Collapse
Affiliation(s)
- Giuseppe Buonaiuto
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Federico Carollo
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Beatriz Olmos
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
19
|
Carollo F, Lesanovsky I. Exactness of Mean-Field Equations for Open Dicke Models with an Application to Pattern Retrieval Dynamics. PHYSICAL REVIEW LETTERS 2021; 126:230601. [PMID: 34170184 DOI: 10.1103/physrevlett.126.230601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Open quantum Dicke models are paradigmatic systems for the investigation of light-matter interaction in out-of-equilibrium quantum settings. Albeit being structurally simple, these models can show intriguing physics. However, obtaining exact results on their dynamical behavior is challenging, since it requires the solution of a many-body quantum system with several interacting continuous and discrete degrees of freedom. Here, we make a step forward in this direction by proving the validity of the mean-field semiclassical equations for open multimode Dicke models, which, to the best of our knowledge, so far has not been rigorously established. We exploit this result to show that open quantum multimode Dicke models can behave as associative memories, displaying a nonequilibrium phase transition toward a pattern-recognition phase.
Collapse
Affiliation(s)
- Federico Carollo
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
20
|
Route to Extend the Lifetime of a Discrete Time Crystal in a Finite Spin Chain without Disorder. ATOMS 2021. [DOI: 10.3390/atoms9020025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Periodically driven (Floquet) systems are described by time-dependent Hamiltonians that possess discrete time translation symmetry. The spontaneous breaking of this symmetry leads to the emergence of a novel non-equilibrium phase of matter—the Discrete Time Crystal (DTC). In this paper, we propose a scheme to extend the lifetime of a DTC in a paradigmatic model—a translation-invariant Ising spin chain with nearest-neighbor interaction J, subjected to a periodic kick by a transverse magnetic field with frequency 2πT. This system exhibits the hallmark signature of a DTC—persistent sub-harmonic oscillations with frequency πT—for a wide parameter regime. Employing both analytical arguments as well as exact diagonalization calculations, we demonstrate that the lifetime of the DTC is maximized, when the interaction strength is tuned to an optimal value, JT=π. Our proposal essentially relies on an interaction-induced quantum interference mechanism that suppresses the creation of excitations, and thereby enhances the DTC lifetime. Intriguingly, we find that the period doubling oscillations can last eternally in even size systems. This anomalously long lifetime can be attributed to a time reflection symmetry that emerges at JT=π. Our work provides a promising avenue for realizing a robust DTC in various quantum emulator platforms.
Collapse
|
21
|
Carollo F, Brandner K, Lesanovsky I. Nonequilibrium Many-Body Quantum Engine Driven by Time-Translation Symmetry Breaking. PHYSICAL REVIEW LETTERS 2020; 125:240602. [PMID: 33412035 DOI: 10.1103/physrevlett.125.240602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Quantum many-body systems out of equilibrium can host intriguing phenomena such as transitions to exotic dynamical states. Although this emergent behaviour can be observed in experiments, its potential for technological applications is largely unexplored. Here, we investigate the impact of collective effects on quantum engines that extract mechanical work from a many-body system. Using an optomechanical cavity setup with an interacting atomic gas as a working fluid, we demonstrate theoretically that such engines produce work under periodic driving. The stationary cycle of the working fluid features nonequilibrium phase transitions, resulting in abrupt changes of the work output. Remarkably, we find that our many-body quantum engine operates even without periodic driving. This phenomenon occurs when its working fluid enters a phase that breaks continuous time-translation symmetry: The emergent time-crystalline phase can sustain the motion of a load generating mechanical work. Our findings pave the way for designing novel nonequilibrium quantum machines.
Collapse
Affiliation(s)
- Federico Carollo
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Kay Brandner
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
22
|
Halati CM, Sheikhan A, Ritsch H, Kollath C. Numerically Exact Treatment of Many-Body Self-Organization in a Cavity. PHYSICAL REVIEW LETTERS 2020; 125:093604. [PMID: 32915618 DOI: 10.1103/physrevlett.125.093604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
We investigate the full quantum evolution of ultracold interacting bosonic atoms on a chain and coupled to an optical cavity. Extending the time-dependent matrix product state techniques and the many-body adiabatic elimination technique to capture the global coupling to the cavity mode and the open nature of the cavity, we examine the long time behavior of the system beyond the mean-field elimination of the cavity field. We investigate the many-body steady states and the self-organization transition for a wide range of parameters. We show that in the self-organized phase the steady state consists in a mixture of the mean-field predicted density wave states and excited states with additional defects. In particular, for large dissipation strengths a steady state with a fully mixed atomic sector is obtained crucially different from the predicted mean-field state.
Collapse
Affiliation(s)
| | - Ameneh Sheikhan
- Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn, Germany
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 21a, A-6020 Innsbruck, Austria
| | - Corinna Kollath
- Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn, Germany
| |
Collapse
|
23
|
Chinzei K, Ikeda TN. Time Crystals Protected by Floquet Dynamical Symmetry in Hubbard Models. PHYSICAL REVIEW LETTERS 2020; 125:060601. [PMID: 32845651 DOI: 10.1103/physrevlett.125.060601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
We investigate an unconventional symmetry in time-periodically driven systems, the Floquet dynamical symmetry (FDS). Unlike the usual symmetries, the FDS gives symmetry sectors that are equidistant in the Floquet spectrum and protects quantum coherence between them from dissipation and dephasing, leading to two kinds of time crystals: the discrete time crystal and discrete time quasicrystal that have different periodicity in time. We show that these time crystals appear in the Bose- and Fermi-Hubbard models under ac fields and their periodicity can be tuned only by adjusting the strength of the field. These time crystals arise only from the FDS and thus appear in both dissipative and isolated systems and in the presence of disorder as long as the FDS is respected. We discuss their experimental realizations in cold atom experiments and generalization to the SU(N)-symmetric Hubbard models.
Collapse
Affiliation(s)
- Koki Chinzei
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Tatsuhiko N Ikeda
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
24
|
Muñoz JM, Wang X, Hewitt T, Kowalczyk AU, Sawant R, Barontini G. Dissipative Distillation of Supercritical Quantum Gases. PHYSICAL REVIEW LETTERS 2020; 125:020403. [PMID: 32701314 DOI: 10.1103/physrevlett.125.020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
We experimentally realize a method to produce nonequilibrium Bose-Einstein condensates with condensed fraction exceeding those of equilibrium samples with the same parameters. To do this, we immerse an ultracold Bose gas of ^{87}Rb in a cloud of ^{39}K with substantially higher temperatures, providing a controlled source of dissipation. By combining the action of the dissipative environment with evaporative cooling, we are able to progressively distil the nonequilibrium Bose-Einstein condensate from the thermal cloud. We show that by increasing the strength of the dissipation it is even possible to produce condensates above the critical temperature. We finally demonstrate that our out-of-equilibrium samples are long lived and do not reach equilibrium in a time that is accessible for our experiment. Due to its high degree of control, our distillation process is a promising tool for the engineering of open quantum systems.
Collapse
Affiliation(s)
- Jorge Mellado Muñoz
- Midlands Ultracold Atom Research Centre, School Of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xi Wang
- Midlands Ultracold Atom Research Centre, School Of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Thomas Hewitt
- Midlands Ultracold Atom Research Centre, School Of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Anna U Kowalczyk
- Midlands Ultracold Atom Research Centre, School Of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rahul Sawant
- Midlands Ultracold Atom Research Centre, School Of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Giovanni Barontini
- Midlands Ultracold Atom Research Centre, School Of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|