1
|
Onishchenko O, Guarnieri G, Rosillo-Rodes P, Pijn D, Hilder J, Poschinger UG, Perarnau-Llobet M, Eisert J, Schmidt-Kaler F. Probing coherent quantum thermodynamics using a trapped ion. Nat Commun 2024; 15:6974. [PMID: 39143048 PMCID: PMC11324868 DOI: 10.1038/s41467-024-51263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Quantum thermodynamics is aimed at grasping thermodynamic laws as they apply to thermal machines operating in the deep quantum regime, where coherence and entanglement are expected to matter. Despite substantial progress, however, it has remained difficult to develop thermal machines in which such quantum effects are observed to be of pivotal importance. In this work, we demonstrate the possibility to experimentally measure and benchmark a genuine quantum correction, induced by quantum friction, to the classical work fluctuation-dissipation relation. This is achieved by combining laser-induced coherent Hamiltonian rotations and energy measurements on a trapped ion. Our results demonstrate that recent developments in stochastic quantum thermodynamics can be used to benchmark and unambiguously distinguish genuine quantum coherent signatures generated along driving protocols, even in presence of experimental SPAM errors and, most importantly, beyond the regimes for which theoretical predictions are available (e.g., in slow driving).
Collapse
Affiliation(s)
- O Onishchenko
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - G Guarnieri
- Department of Physics and INFN - Sezione di Pavia, University of Pavia, Via Bassi 6, 27100, Pavia, Italy.
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany.
| | - P Rosillo-Rodes
- Institute for Cross-Disciplinary Physics and Complex Systems, Campus Universitat de les Illes Balears, E-07122, Palma, Spain
| | - D Pijn
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - J Hilder
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - U G Poschinger
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - M Perarnau-Llobet
- Department of Applied Physics, University of Geneva, 1211, Geneva, Switzerland
| | - J Eisert
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195, Berlin, Germany
| | - F Schmidt-Kaler
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128, Mainz, Germany
| |
Collapse
|
2
|
Anka MF, de Oliveira TR, Jonathan D. Work and efficiency fluctuations in a quantum Otto cycle with idle levels. Phys Rev E 2024; 109:064129. [PMID: 39021004 DOI: 10.1103/physreve.109.064129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
We study the performance of a quantum Otto heat engine with two spins coupled by a Heisenberg interaction, taking into account not only the mean values of work and efficiency but also their fluctuations. We first show that, for this system, the output work and its fluctuations are directly related to the magnetization and magnetic susceptibility of the system at equilibrium with either heat bath. We analyze the regions where the work extraction can be done with low relative fluctuation for a given range of temperatures, while still achieving an efficiency higher than that of a single spin system heat engine. In particular, we find that, due to the presence of "idle" levels, an increase in the interspin coupling can either increase or decrease fluctuations, depending on the other parameters. In all cases, however, we find that the relative fluctuations in work or efficiency remain large, implying that this microscopic engine is not very reliable as a source of work.
Collapse
|
3
|
Huang Z. Integral fluctuation theorems and trace-preserving map. Phys Rev E 2024; 109:064111. [PMID: 39020958 DOI: 10.1103/physreve.109.064111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
The detailed fluctuation theorem implies symmetry in the generating function of entropy production probability. The integral fluctuation theorem directly follows from this symmetry and the normalization of the probability. In this paper, we rewrite the generating function by integrating measurements and evolution into a constructed mapping. This mapping is completely positive, and the original integral fluctuation theorem is determined by the trace-preserving property of these constructed maps. We illustrate the convenience of this method by discussing the eigenstate fluctuation theorem and heat exchange between two baths. This set of methods is also applicable to the generating functions of quasiprobability, where we observe the Petz recovery map arising naturally from this approach.
Collapse
|
4
|
Tejero Á, Manzano D, Hurtado PI. Atom-doped photon engine: Extracting mechanical work from a quantum system via radiation pressure. Phys Rev E 2024; 109:024141. [PMID: 38491628 DOI: 10.1103/physreve.109.024141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
The possibility of efficiently converting heat into work at the microscale has triggered an intense research effort to understand quantum heat engines, driven by the hope of quantum superiority over classical counterparts. In this work, we introduce a model featuring an atom-doped optical quantum cavity propelling a classical piston through radiation pressure. The model, based on the Jaynes-Cummings Hamiltonian of quantum electrodynamics, demonstrates the generation of mechanical work through thermal energy injection. We establish the equivalence of the piston expansion work with Alicki's work definition, analytically for quasistatic transformations and numerically for finite-time protocols. We further employ the model to construct quantum Otto and Carnot engines, comparing their performance in terms of energetics, work output, efficiency, and power under various conditions. This model thus provides a platform to extract useful work from an open quantum system to generate net motion, and it sheds light on the quantum concepts of work and heat.
Collapse
Affiliation(s)
- Álvaro Tejero
- Electromagnetism and Condensed Matter Department and Carlos I Institute for Theoretical and Computational Physics, University of Granada, E-18071 Granada, Spain
| | - Daniel Manzano
- Electromagnetism and Condensed Matter Department and Carlos I Institute for Theoretical and Computational Physics, University of Granada, E-18071 Granada, Spain
| | - Pablo I Hurtado
- Electromagnetism and Condensed Matter Department and Carlos I Institute for Theoretical and Computational Physics, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
5
|
Salazar DSP. Improving the Cramér-Rao bound with the detailed fluctuation theorem. Phys Rev E 2023; 108:064118. [PMID: 38243490 DOI: 10.1103/physreve.108.064118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
In some nonequilibrium systems, the distribution of entropy production p(Σ) satisfies the detailed fluctuation theorem (DFT) p(Σ)/p(-Σ)=exp(Σ). When the distribution p(Σ) shows a time dependence, the celebrated Cramér-Rao (CR) bound asserts that the mean entropy production rate is upper bounded in terms of the variance of Σ and the Fisher information with respect to time. In this paper we employ the DFT to derive an upper bound for the mean entropy production rate that improves the CR bound. We show that this new bound serves as an accurate approximation for the entropy production rate in the heat exchange problem mediated by a weakly coupled bosonic mode. The bound is saturated for the same setup when mediated by a weakly coupled qubit.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Salazar DSP. Thermodynamic variational relation. Phys Rev E 2023; 108:044103. [PMID: 37978589 DOI: 10.1103/physreve.108.044103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
In systems far from equilibrium, the statistics of observables are connected to entropy production, leading to the thermodynamic uncertainty relation (TUR). However, the derivation of TURs often involves constraining the parity of observables, such as considering asymmetric currents, making it unsuitable for the general case. We propose a thermodynamic variational relation (TVR) between the statistics of general observables and entropy production, based on the variational representation of f divergences. From this result, we derive a universal TUR and other relations for higher-order statistics of observables.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Zhang ZZ, Tan QS, Wu W. Heat distribution in quantum Brownian motion. Phys Rev E 2023; 108:014138. [PMID: 37583192 DOI: 10.1103/physreve.108.014138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
We investigate the heat statistics in a relaxation process of quantum Brownian motion described by the Caldeira-Leggett model. By employing the normal mode transformation and the phase-space formulation approach, we can analyze the quantum heat distribution within an exactly dynamical framework beyond the traditional paradigm of Born-Markovian and weak-coupling approximations. It is revealed that the exchange fluctuation theorem for quantum heat generally breaks down in the strongly non-Markovian regime. Our results may improve the understanding about the nonequilibrium thermodynamics of open quantum systems when the usual Markovian treatment is no longer appropriate.
Collapse
Affiliation(s)
- Ze-Zhou Zhang
- Key Laboratory of Quantum Theory and Applications of Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Qing-Shou Tan
- Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communication, College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414000, China
| | - Wei Wu
- Key Laboratory of Quantum Theory and Applications of Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Fiorelli E, Gherardini S, Marcantoni S. Stochastic Entropy Production: Fluctuation Relation and Irreversibility Mitigation in Non-unital Quantum Dynamics. JOURNAL OF STATISTICAL PHYSICS 2023; 190:111. [PMID: 37323124 PMCID: PMC10267040 DOI: 10.1007/s10955-023-03118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
In this work, we study the stochastic entropy production in open quantum systems whose time evolution is described by a class of non-unital quantum maps. In particular, as in Phys Rev E 92:032129 (2015), we consider Kraus operators that can be related to a nonequilibrium potential. This class accounts for both thermalization and equilibration to a non-thermal state. Unlike unital quantum maps, non-unitality is responsible for an unbalance of the forward and backward dynamics of the open quantum system under scrutiny. Here, concentrating on observables that commute with the invariant state of the evolution, we show how the non-equilibrium potential enters the statistics of the stochastic entropy production. In particular, we prove a fluctuation relation for the latter and we find a convenient way of expressing its average solely in terms of relative entropies. Then, the theoretical results are applied to the thermalization of a qubit with non-Markovian transient, and the phenomenon of irreversibility mitigation, introduced in Phys Rev Res 2:033250 (2020), is analyzed in this context.
Collapse
Affiliation(s)
- Eliana Fiorelli
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC UIB Campus, 07122 Palma de Mallorca, Spain
| | - Stefano Gherardini
- Istituto Nazionale di Ottica - CNR, Area Science Park, Basovizza, 34149 Trieste, Italy
- LENS, University of Florence, via Carrara 1, 50019 Sesto Fiorentino, Italy
- The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Stefano Marcantoni
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD UK
- Mathematics Area, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
9
|
Salazar DSP. Bound for the moment generating function from the detailed fluctuation theorem. Phys Rev E 2023; 107:L062103. [PMID: 37464678 DOI: 10.1103/physreve.107.l062103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 07/20/2023]
Abstract
A famous consequence of the detailed fluctuation theorem (FT), p(Σ)/p(-Σ)=exp(Σ), is the integral FT 〈exp(-Σ)〉=1 for a random variable Σ and a distribution p(Σ). When Σ represents the entropy production in thermodynamics, the main outcome of the integral FT is the second law, 〈Σ〉≥0. However, a full description of the fluctuations of Σ might require knowledge of the moment generating function (MGF), G(α):=〈exp(αΣ)〉. In the context of the detailed FT, we show the MGF is lower bounded in the form G(α)≥B(α,〈Σ〉) for a given mean 〈Σ〉. As applications, we verify that the bound is satisfied for the entropy produced in the heat exchange problem between two reservoirs mediated by a weakly coupled bosonic mode and a qubit swap engine.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| |
Collapse
|
10
|
Schmidt HJ, Gemmer J. Stochastic Thermodynamics of a Finite Quantum System Coupled to Two Heat Baths. ENTROPY (BASEL, SWITZERLAND) 2023; 25:504. [PMID: 36981392 PMCID: PMC10048248 DOI: 10.3390/e25030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
We consider a situation where an N-level system (NLS) is coupled successively to two heat baths with different temperatures without being necessarily thermalized and approaches a steady state. For this situation we apply a general Jarzynski-type equation and conclude that heat and entropy is flowing from the hot bath to the cold one. The Clausius relation between increase of entropy and transfer of heat divided by a suitable temperature assumes the form of two inequalities. Our approach is illustrated by an analytical example. For the linear regime, i.e., for small temperature differences between the two heat baths, we derive an expression for the heat conduction coefficient.
Collapse
|
11
|
Bellini M, Kwon H, Biagi N, Francesconi S, Zavatta A, Kim MS. Demonstrating Quantum Microscopic Reversibility Using Coherent States of Light. PHYSICAL REVIEW LETTERS 2022; 129:170604. [PMID: 36332254 DOI: 10.1103/physrevlett.129.170604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The principle of microscopic reversibility lies at the core of fluctuation theorems, which have extended our understanding of the second law of thermodynamics to the statistical level. In the quantum regime, however, this elementary principle should be amended as the system energy cannot be sharply determined at a given quantum phase space point. In this Letter, we propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath through energy-preserving unitary dynamics. Quantum effects can be identified by noting that the backward process is less likely to happen in the existence of quantum coherence between the system's energy eigenstates. The experimental demonstration has been realized by mixing coherent and thermal states in a beam splitter, followed by heterodyne detection in an optical setup. We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit, while the quantum-to-classical transition is observed as the temperature of the thermal field gets higher.
Collapse
Affiliation(s)
- Marco Bellini
- Istituto Nazionale di Ottica (CNR-INO), Largo Enrico Fermi 6, 50125 Florence, Italy
- LENS and Department of Physics and Astronomy, University of Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Hyukjoon Kwon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Nicola Biagi
- Istituto Nazionale di Ottica (CNR-INO), Largo Enrico Fermi 6, 50125 Florence, Italy
- LENS and Department of Physics and Astronomy, University of Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Saverio Francesconi
- Istituto Nazionale di Ottica (CNR-INO), Largo Enrico Fermi 6, 50125 Florence, Italy
- LENS and Department of Physics and Astronomy, University of Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessandro Zavatta
- Istituto Nazionale di Ottica (CNR-INO), Largo Enrico Fermi 6, 50125 Florence, Italy
- LENS and Department of Physics and Astronomy, University of Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - M S Kim
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Beyer K, Uola R, Luoma K, Strunz WT. Joint measurability in nonequilibrium quantum thermodynamics. Phys Rev E 2022; 106:L022101. [PMID: 36109912 DOI: 10.1103/physreve.106.l022101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In this Letter we investigate the concept of quantum work and its measurability from the viewpoint of quantum measurement theory. Very often, quantum work and fluctuation theorems are discussed in the framework of projective two-point measurement (TPM) schemes. According to a well-known no-go theorem, there is no work observable which satisfies both (i) an average work condition and (ii) the TPM statistics for diagonal input states. Such projective measurements represent a restrictive class among all possible measurements. It is desirable, both from a theoretical and experimental point of view, to extend the scheme to the general case including suitably designed unsharp measurements. This shifts the focus to the question of what information about work and its fluctuations one is able to extract from such generalized measurements. We show that the no-go theorem no longer holds if the observables in a TPM scheme are jointly measurable for any intermediate unitary evolution. We explicitly construct a model with unsharp energy measurements and derive bounds for the visibility that ensure joint measurability. In such an unsharp scenario a single work measurement apparatus can be constructed that allows us to determine the correct average work and to obtain free energy differences with the help of a Jarzynski equality.
Collapse
Affiliation(s)
- Konstantin Beyer
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Roope Uola
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Kimmo Luoma
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
- Turku Center for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland
| | - Walter T Strunz
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
13
|
Verification of Information Thermodynamics in a Trapped Ion System. ENTROPY 2022; 24:e24060813. [PMID: 35741534 PMCID: PMC9222944 DOI: 10.3390/e24060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Information thermodynamics has developed rapidly over past years, and the trapped ions, as a controllable quantum system, have demonstrated feasibility to experimentally verify the theoretical predictions in the information thermodynamics. Here, we address some representative theories of information thermodynamics, such as the quantum Landauer principle, information equality based on the two-point measurement, information-theoretical bound of irreversibility, and speed limit restrained by the entropy production of system, and review their experimental demonstration in the trapped ion system. In these schemes, the typical physical processes, such as the entropy flow, energy transfer, and information flow, build the connection between thermodynamic processes and information variation. We then elucidate the concrete quantum control strategies to simulate these processes by using quantum operators and the decay paths in the trapped-ion system. Based on them, some significantly dynamical processes in the trapped ion system to realize the newly proposed information-thermodynamic models is reviewed. Although only some latest experimental results of information thermodynamics with a single trapped-ion quantum system are reviewed here, we expect to find more exploration in the future with more ions involved in the experimental systems.
Collapse
|
14
|
Ji W, Chai Z, Wang M, Guo Y, Rong X, Shi F, Ren C, Wang Y, Du J. Spin Quantum Heat Engine Quantified by Quantum Steering. PHYSICAL REVIEW LETTERS 2022; 128:090602. [PMID: 35302812 DOI: 10.1103/physrevlett.128.090602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Following the rising interest in quantum information science, the extension of a heat engine to the quantum regime by exploring microscopic quantum systems has seen a boon of interest in the last decade. Although quantum coherence in the quantum system of the working medium has been investigated to play a nontrivial role, a complete understanding of the intrinsic quantum advantage of quantum heat engines remains elusive. We experimentally demonstrate that the quantum correlation between the working medium and the thermal bath is critical for the quantum advantage of a quantum Szilárd engine, where quantum coherence in the working medium is naturally excluded. By quantifying the nonclassical correlation through quantum steering, we reveal that the heat engine is quantum when the demon can truly steer the working medium. The average work obtained by taking different ways of work extraction on the working medium can be used to verify the real quantum Szilárd engine.
Collapse
Affiliation(s)
- Wentao Ji
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zihua Chai
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mengqi Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yuhang Guo
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xing Rong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fazhan Shi
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Changliang Ren
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Yan LL, Zhang JW, Yun MR, Li JC, Ding GY, Wei JF, Bu JT, Wang B, Chen L, Su SL, Zhou F, Jia Y, Liang EJ, Feng M. Experimental Verification of Dissipation-Time Uncertainty Relation. PHYSICAL REVIEW LETTERS 2022; 128:050603. [PMID: 35179926 DOI: 10.1103/physrevlett.128.050603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Dissipation is vital to any cyclic process in realistic systems. Recent research focus on nonequilibrium processes in stochastic systems has revealed a fundamental trade-off, called dissipation-time uncertainty relation, that entropy production rate associated with dissipation bounds the evolution pace of physical processes [Phys. Rev. Lett. 125, 120604 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.120604]. Following the dissipative two-level model exemplified in the same Letter, we experimentally verify this fundamental trade-off in a single trapped ultracold ^{40}Ca^{+} ion using elaborately designed dissipative channels, along with a postprocessing method developed in the data analysis, to build the effective nonequilibrium stochastic evolutions for the energy transfer between two heat baths mediated by a qubit. Since the dissipation-time uncertainty relation imposes a constraint on the quantum speed regarding entropy flux, our observation provides the first experimental evidence confirming such a speed restriction from thermodynamics on quantum operations due to dissipation, which helps us further understand the role of thermodynamical characteristics played in quantum information processing.
Collapse
Affiliation(s)
- L-L Yan
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - J-W Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - M-R Yun
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - J-C Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - G-Y Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - J-F Wei
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - J-T Bu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - B Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - L Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - S-L Su
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - F Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| | - Y Jia
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials and Engineering, Henan University, Kaifeng 475001, China
| | - E-J Liang
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - M Feng
- School of Physics, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, University of the Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China
| |
Collapse
|
16
|
Kolchinsky A, Wolpert DH. Dependence of integrated, instantaneous, and fluctuating entropy production on the initial state in quantum and classical processes. Phys Rev E 2021; 104:054107. [PMID: 34942730 DOI: 10.1103/physreve.104.054107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/28/2021] [Indexed: 11/07/2022]
Abstract
We consider the additional entropy production (EP) incurred by a fixed quantum or classical process on some initial state ρ, above the minimum EP incurred by the same process on any initial state. We show that this additional EP, which we term the "mismatch cost of ρ," has a universal information-theoretic form: it is given by the contraction of the relative entropy between ρ and the least-dissipative initial state φ over time. We derive versions of this result for integrated EP incurred over the course of a process, for trajectory-level fluctuating EP, and for instantaneous EP rate. We also show that mismatch cost for fluctuating EP obeys an integral fluctuation theorem. Our results demonstrate a fundamental relationship between thermodynamic irreversibility (generation of EP) and logical irreversibility (inability to know the initial state corresponding to a given final state). We use this relationship to derive quantitative bounds on the thermodynamics of quantum error correction and to propose a thermodynamically operationalized measure of the logical irreversibility of a quantum channel. Our results hold for both finite- and infinite-dimensional systems, and generalize beyond EP to many other thermodynamic costs, including nonadiabatic EP, free-energy loss, and entropy gain.
Collapse
Affiliation(s)
- Artemy Kolchinsky
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
| | - David H Wolpert
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
| |
Collapse
|
17
|
Micadei K, Peterson JPS, Souza AM, Sarthour RS, Oliveira IS, Landi GT, Serra RM, Lutz E. Experimental Validation of Fully Quantum Fluctuation Theorems Using Dynamic Bayesian Networks. PHYSICAL REVIEW LETTERS 2021; 127:180603. [PMID: 34767410 DOI: 10.1103/physrevlett.127.180603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems. Their general validity arbitrarily far from equilibrium makes them invaluable in nonequilibrium physics. So far, experimental studies of quantum fluctuation relations do not account for quantum correlations and quantum coherence, two essential quantum properties. We here apply a novel dynamic Bayesian network approach to experimentally test detailed and integral fully quantum fluctuation theorems for heat exchange between two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup. We concretely verify individual integral fluctuation relations for quantum correlations and quantum coherence, as well as for the sum of all quantum contributions. We further investigate the thermodynamic cost of creating correlations and coherence.
Collapse
Affiliation(s)
- Kaonan Micadei
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| | - John P S Peterson
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Alexandre M Souza
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto S Sarthour
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivan S Oliveira
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel T Landi
- Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, São Paolo, Brazil
| | - Roberto M Serra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André, São Paulo, Brazil
- Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| |
Collapse
|
18
|
Gherardini S, Giachetti G, Ruffo S, Trombettoni A. Thermalization processes induced by quantum monitoring in multilevel systems. Phys Rev E 2021; 104:034114. [PMID: 34654093 DOI: 10.1103/physreve.104.034114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022]
Abstract
We study the heat statistics of a multilevel N-dimensional quantum system monitored by a sequence of projective measurements. The late-time, asymptotic properties of the heat characteristic function are analyzed in the thermodynamic limit of a high, ideally infinite, number M of measurements (M→∞). In this context, the conditions allowing for an infinite-temperature thermalization (ITT), induced by the repeated monitoring of the quantum system, are discussed. We show that ITT is identified by the fixed point of a symmetric random matrix that models the stochastic process originated by the sequence of measurements. Such fixed point is independent on the nonequilibrium evolution of the system and its initial state. Exceptions to ITT, which we refer to as partial thermalization, take place when the observable of the intermediate measurements is commuting (or quasicommuting) with the Hamiltonian of the quantum system or when the time interval between measurements is smaller or comparable with the system energy scale (quantum Zeno regime). Results on the limit of infinite-dimensional Hilbert spaces (N→∞), describing continuous systems with a discrete spectrum, are also presented. We show that the order of the limits M→∞ and N→∞ matters: When N is fixed and M diverges, then ITT occurs. In the opposite case, the system becomes classical, so that the measurements are no longer effective in changing the state of the system. A nontrivial result is obtained fixing M/N^{2} where instead partial ITT occurs. Finally, an example of partial thermalization applicable to rotating two-dimensional gases is presented.
Collapse
Affiliation(s)
- S Gherardini
- SISSA and INFN, I-34136 Trieste, Italy.,Department of Physics and Astronomy and LENS, University of Florence, I-50019 Sesto Fiorentino, Italy.,CNR-IOM DEMOCRITOS Simulation Center, I-34136 Trieste, Italy
| | | | - S Ruffo
- SISSA and INFN, I-34136 Trieste, Italy.,Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino, Italy
| | - A Trombettoni
- SISSA and INFN, I-34136 Trieste, Italy.,CNR-IOM DEMOCRITOS Simulation Center, I-34136 Trieste, Italy.,Department of Physics, University of Trieste, I-34151 Trieste, Italy
| |
Collapse
|
19
|
Riechers PM, Gu M. Initial-state dependence of thermodynamic dissipation for any quantum process. Phys Rev E 2021; 103:042145. [PMID: 34005943 DOI: 10.1103/physreve.103.042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Exact results about the nonequilibrium thermodynamics of open quantum systems at arbitrary timescales are obtained by considering all possible variations of initial conditions of a system. First we obtain a quantum-information theoretic equality for entropy production, valid for an arbitrary initial joint state of system and environment. For any finite-time process with a fixed initial environment, we then show that the system's loss of distinction-relative to the minimally dissipative state-exactly quantifies its thermodynamic dissipation. The quantum component of this dissipation is the change in coherence relative to the minimally dissipative state. Implications for quantum state preparation and local control are explored. For nonunitary processes-like the preparation of any particular quantum state-we find that mismatched expectations lead to divergent dissipation as the actual initial state becomes orthogonal to the anticipated one.
Collapse
Affiliation(s)
- Paul M Riechers
- Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore
- Complexity Institute, Nanyang Technological University, 637335 Singapore
| | - Mile Gu
- Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore
- Complexity Institute, Nanyang Technological University, 637335 Singapore
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| |
Collapse
|
20
|
Díaz MG, Guarnieri G, Paternostro M. Quantum Work Statistics with Initial Coherence. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1223. [PMID: 33286991 PMCID: PMC7712153 DOI: 10.3390/e22111223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
The two-point measurement scheme for computing the thermodynamic work performed on a system requires it to be initially in equilibrium. The Margenau-Hill scheme, among others, extends the previous approach to allow for a non-equilibrium initial state. We establish a quantitative comparison between both schemes in terms of the amount of coherence present in the initial state of the system, as quantified by the l1-coherence measure. We show that the difference between the two first moments of work, the variances of work, and the average entropy production obtained in both schemes can be cast in terms of such initial coherence. Moreover, we prove that the average entropy production can take negative values in the Margenau-Hill framework.
Collapse
Affiliation(s)
- María García Díaz
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain;
| | - Giacomo Guarnieri
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland;
| | - Mauro Paternostro
- Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, UK
| |
Collapse
|
21
|
Sone A, Liu YX, Cappellaro P. Quantum Jarzynski Equality in Open Quantum Systems from the One-Time Measurement Scheme. PHYSICAL REVIEW LETTERS 2020; 125:060602. [PMID: 32845688 DOI: 10.1103/physrevlett.125.060602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
In open quantum systems, a clear distinction between work and heat is often challenging, and extending the quantum Jarzynski equality to systems evolving under general quantum channels beyond unitality remains an open problem in quantum thermodynamics. In this Letter, we introduce well-defined notions of guessed quantum heat and guessed quantum work, by exploiting the one-time measurement scheme, which only requires an initial energy measurement on the system alone. We derive a modified quantum Jarzynski equality and the principle of maximum work with respect to the guessed quantum work, which requires the knowledge of the system only. We further show the significance of guessed quantum heat and work by linking them to the problem of quantum hypothesis testing.
Collapse
Affiliation(s)
- Akira Sone
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yi-Xiang Liu
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paola Cappellaro
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
22
|
Timpanaro AM, Santos JP, Landi GT. Landauer's Principle at Zero Temperature. PHYSICAL REVIEW LETTERS 2020; 124:240601. [PMID: 32639823 DOI: 10.1103/physrevlett.124.240601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Landauer's bound relates changes in the entropy of a system with the inevitable dissipation of heat to the environment. The bound, however, becomes trivial in the limit of zero temperature. Here we show that it is possible to derive a tighter bound which remains nontrivial even as T→0. As in the original case, the only assumption we make is that the environment is in a thermal state. Nothing is said about the state of the system or the kind of system-environment interaction. Our bound is valid for all temperatures and is always tighter than the original one, tending to it in the limit of high temperatures.
Collapse
Affiliation(s)
| | - Jader P Santos
- Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil
| | - Gabriel T Landi
- Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil
| |
Collapse
|