1
|
Dogan M, Chelikowsky JR, Cohen ML. Anisotropy and isotope effect in superconducting solid hydrogen. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:01LT01. [PMID: 37751761 DOI: 10.1088/1361-648x/acfd79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Elucidating the phase diagram of solid hydrogen is a key objective in condensed matter physics. Several decades ago, it was proposed that at low temperatures and high pressures, solid hydrogen would be a metal with a high superconducting transition temperature. This transition to a metallic state can happen through the closing of the energy gap in the molecular solid or through a transition to an atomic solid. Recent experiments have managed to reach pressures in the range of 400-500 GPa, providing valuable insights. There is strong evidence suggesting that metallization via either of these mechanisms occurs within this pressure range. Computational and experimental studies have identified multiple promising crystal phases, but the limited accuracy of calculations and the limited capabilities of experiments prevent us from determining unequivocally the observed phase or phases. Therefore, it is crucial to investigate the superconducting properties of all the candidate phases. Recently, we reported the superconducting properties of theC2/c-24,Cmca-12,Cmca-4 andI41/amd-2 phases, including anharmonic effects. Here, we report the effects of anisotropy on superconducting properties using Eliashberg theory. Then, we investigate the superconducting properties of deuterium and estimate the size of the isotope effect for each phase. We find that the isotope effect on superconductivity is diminished by anharmonicity in theC2/c-24 andCmca-12 phases and enlarged in theCmca-4 andI41/amd-2 phases. Our anharmonic calculations of theC2/c-24 phase of deuterium agree closely with the most recent experiment by Loubeyreet al(2022Phys. Rev. Lett.29035501), indicating that theC2/c-24 phase remains the leading candidate in this pressure range, and has a strong anharmonic character. These characteristics can serve to distinguish among crystal phases in experiment. Furthermore, expanding our understanding of superconductivity in pure hydrogen holds significance in the study of high-Tchydrides.
Collapse
Affiliation(s)
- Mehmet Dogan
- Center for Computational Materials, Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, United States of America
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - James R Chelikowsky
- Center for Computational Materials, Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, United States of America
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, United States of America
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Marvin L Cohen
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
2
|
Eremets MI, Minkov VS, Kong PP, Drozdov AP, Chariton S, Prakapenka VB. Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen. Nat Commun 2023; 14:907. [PMID: 36806640 PMCID: PMC9938121 DOI: 10.1038/s41467-023-36429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
The recent progress in generating static pressures up to terapascal values opens opportunities for studying novel materials with unusual properties, such as metallization of hydrogen and high-temperature superconductivity. However, an evaluation of pressure above ~0.3 terapascal is a challenge. We report a universal high-pressure scale up to ~0.5 terapascal, which is based on the shift of the Raman edge of stressed diamond anvils correlated with the equation of state of Au and does not require an additional pressure sensor. According to the new scale, the pressure values are substantially lower by 20% at ~0.5 terapascal compared to the extrapolation of the existing scales. We compare the available data of H2 at the highest static pressures. We show that the onset of the proposed metallization of molecular hydrogen reported by different groups is consistent when corrected with the new scale and can be compared with various theoretical predictions.
Collapse
Affiliation(s)
- M. I. Eremets
- grid.419509.00000 0004 0491 8257Max Planck Institute for Chemistry, Hahn Meitner Weg 1, Mainz, 55128 Germany
| | - V. S. Minkov
- grid.419509.00000 0004 0491 8257Max Planck Institute for Chemistry, Hahn Meitner Weg 1, Mainz, 55128 Germany
| | - P. P. Kong
- grid.419509.00000 0004 0491 8257Max Planck Institute for Chemistry, Hahn Meitner Weg 1, Mainz, 55128 Germany
| | - A. P. Drozdov
- grid.419509.00000 0004 0491 8257Max Planck Institute for Chemistry, Hahn Meitner Weg 1, Mainz, 55128 Germany
| | - S. Chariton
- grid.170205.10000 0004 1936 7822Center for Advanced Radiation Sources, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 USA
| | - V. B. Prakapenka
- grid.170205.10000 0004 1936 7822Center for Advanced Radiation Sources, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 USA
| |
Collapse
|
3
|
Niu H, Yang Y, Jensen S, Holzmann M, Pierleoni C, Ceperley DM. Stable Solid Molecular Hydrogen above 900 K from a Machine-Learned Potential Trained with Diffusion Quantum Monte Carlo. PHYSICAL REVIEW LETTERS 2023; 130:076102. [PMID: 36867819 DOI: 10.1103/physrevlett.130.076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
We survey the phase diagram of high-pressure molecular hydrogen with path integral molecular dynamics using a machine-learned interatomic potential trained with quantum Monte Carlo forces and energies. Besides the HCP and C2/c-24 phases, we find two new stable phases both with molecular centers in the Fmmm-4 structure, separated by a molecular orientation transition with temperature. The high temperature isotropic Fmmm-4 phase has a reentrant melting line with a maximum at higher temperature (1450 K at 150 GPa) than previously estimated and crosses the liquid-liquid transition line around 1200 K and 200 GPa.
Collapse
Affiliation(s)
- Hongwei Niu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yubo Yang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Scott Jensen
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | | | - Carlo Pierleoni
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio 10, I-67010 L'Aquila, Italy
| | - David M Ceperley
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Loubeyre P, Occelli F, Dumas P. Compression of D_{2} to 460 GPa and Isotopic Effects in the Path to Metal Hydrogen. PHYSICAL REVIEW LETTERS 2022; 129:035501. [PMID: 35905331 DOI: 10.1103/physrevlett.129.035501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
How are nuclear quantum fluctuations affecting the properties of dense hydrogen approaching metallization? We report here Raman spectroscopy and synchrotron infrared absorption measurements on deuterium up to 460 GPa at 80 K. By comparing to a previous similar study on hydrogen, isotopic effects on the electronic and vibrational properties in phase III are disclosed. Also, evidence of a probable transition to metal deuterium is observed, shifted by about 35 GPa compared to that in hydrogen. Advanced calculations, quantifying a reduction of the band gap caused by nuclear quantum fluctuations, are compared to the present data.
Collapse
Affiliation(s)
- Paul Loubeyre
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Paris Saclay, Laboratoire Matiere Condit Extremes, CEA, F-91680 Bruyeres Le Chatel, France
| | - Florent Occelli
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Paris Saclay, Laboratoire Matiere Condit Extremes, CEA, F-91680 Bruyeres Le Chatel, France
| | - Paul Dumas
- CEA, DAM, DIF, F-91297 Arpajon, France
- Synchrotron SOLEIL, L'Orme des Merisiers, F-91191 Gif Sur Yvette, France
| |
Collapse
|
5
|
Boeri L, Hennig R, Hirschfeld P, Profeta G, Sanna A, Zurek E, Pickett WE, Amsler M, Dias R, Eremets MI, Heil C, Hemley RJ, Liu H, Ma Y, Pierleoni C, Kolmogorov AN, Rybin N, Novoselov D, Anisimov V, Oganov AR, Pickard CJ, Bi T, Arita R, Errea I, Pellegrini C, Requist R, Gross EKU, Margine ER, Xie SR, Quan Y, Hire A, Fanfarillo L, Stewart GR, Hamlin JJ, Stanev V, Gonnelli RS, Piatti E, Romanin D, Daghero D, Valenti R. The 2021 room-temperature superconductivity roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:183002. [PMID: 34544070 DOI: 10.1088/1361-648x/ac2864] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all.
Collapse
Affiliation(s)
- Lilia Boeri
- Physics Department, Sapienza University and Enrico Fermi Research Center, Rome, Italy
| | - Richard Hennig
- Deparment of Material Science and Engineering and Quantum Theory Project, University of Florida, Gainesville 32611, United States of America
| | - Peter Hirschfeld
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | | | - Antonio Sanna
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Eva Zurek
- University at Buffalo, SUNY, United States of America
| | | | - Maximilian Amsler
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, United States of America
| | - Ranga Dias
- University of Rochester, United States of America
| | | | | | | | - Hanyu Liu
- Jilin University, People's Republic of China
| | - Yanming Ma
- Jilin University, People's Republic of China
| | - Carlo Pierleoni
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | | | | | | | | | | | | | - Tiange Bi
- University at Buffalo, SUNY, United States of America
| | | | - Ion Errea
- University of the Basque Country, Spain
| | | | - Ryan Requist
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Hebrew University of Jerusalem, Israel
| | - E K U Gross
- Max Planck Institute of Microstructure Physics, Halle, Germany
- Hebrew University of Jerusalem, Israel
| | | | - Stephen R Xie
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - Yundi Quan
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - Ajinkya Hire
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - Laura Fanfarillo
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - G R Stewart
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | - J J Hamlin
- Department of Physics, University of Florida, Gainesville, FL 32611, United States of America
| | | | | | | | | | | | | |
Collapse
|
6
|
Dogan M, Oh S, Cohen ML. High temperature superconductivity in the candidate phases of solid hydrogen. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:15LT01. [PMID: 35042192 DOI: 10.1088/1361-648x/ac4c62] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
As the simplest element in nature, unraveling the phase diagram of hydrogen is a primary task for condensed matter physics. As conjectured many decades ago, in the low-temperature and high-pressure part of the phase diagram, solid hydrogen is expected to become metallic with a high superconducting transition temperature. The metallization may occur via band gap closure in the molecular solid or via a transition to the atomic solid. Recently, a few experimental studies pushed the achievable pressures into the 400-500 GPa range. There are strong indications that at some pressure in this range metallization via either of these mechanisms occurs, although there are disagreements between experimental reports. Furthermore, there are multiple good candidate crystal phases that have emerged from recent computational and experimental studies which may be realized in upcoming experiments. Therefore, it is crucial to determine the superconducting properties of these candidate phases. In a recent study, we reported the superconducting properties of theC2/c-24 phase, which we believe to be a strong candidate for metallization via band gap closure (Doganet al2022Phys. Rev. B105L020509). Here, we report the superconducting properties of theCmca-12,Cmca-4 andI41/amd-2 phases including the anharmonic effects using a Wannier function-based densek-point andq-point sampling. We find that theCmca-12 phase has a superconducting transition temperature that rises from 86 K at 400 GPa to 212 K at 500 GPa, whereas theCmca-4 andI41/amd-2 phases show a less pressure-dependent behavior with theirTcin the 74-94 K and 307-343 K ranges, respectively. These properties can be used to distinguish between crystal phases in future experiments. Understanding superconductivity in pure hydrogen is also important in the study of high-Tchydrides.
Collapse
Affiliation(s)
- Mehmet Dogan
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Sehoon Oh
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Marvin L Cohen
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
7
|
Li B, Ding Y, Kim DY, Wang L, Weng TC, Yang W, Yu Z, Ji C, Wang J, Shu J, Chen J, Yang K, Xiao Y, Chow P, Shen G, Mao WL, Mao HK. Probing the Electronic Band Gap of Solid Hydrogen by Inelastic X-Ray Scattering up to 90 GPa. PHYSICAL REVIEW LETTERS 2021; 126:036402. [PMID: 33543962 DOI: 10.1103/physrevlett.126.036402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Metallization of hydrogen as a key problem in modern physics is the pressure-induced evolution of the hydrogen electronic band from a wide-gap insulator to a closed gap metal. However, due to its remarkably high energy, the electronic band gap of insulating hydrogen has never before been directly observed under pressure. Using high-brilliance, high-energy synchrotron radiation, we developed an inelastic x-ray probe to yield the hydrogen electronic band information in situ under high pressures in a diamond-anvil cell. The dynamic structure factor of hydrogen was measured over a large energy range of 45 eV. The electronic band gap was found to decrease linearly from 10.9 to 6.57 eV, with an 8.6 times densification (ρ/ρ_{0}∼8.6) from zero pressure up to 90 GPa.
Collapse
Affiliation(s)
- Bing Li
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Duck Young Kim
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Lin Wang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Tsu-Chien Weng
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Zhenhai Yu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Cheng Ji
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Junyue Wang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Jinfu Shu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Jiuhua Chen
- Center for the Study of Matter at Extreme Conditions, Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33199, USA
| | - Ke Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yuming Xiao
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Paul Chow
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Guoyin Shen
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Wendy L Mao
- Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| |
Collapse
|
8
|
Dogan M, Oh S, Cohen ML. Observed metallization of hydrogen interpreted as a band structure effect. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:03LT01. [PMID: 33078714 DOI: 10.1088/1361-648x/abba8a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
A recent experimental study of the metallization of hydrogen tracked the direct band gap and vibron frequency via infrared measurements up to ∼425 GPa (Loubeyreet al(2020Nature577631). Above this pressure, the direct gap has a discontinuous drop to below the minimum experimentally accessible energy (∼0.1 eV). The authors suggested that this observation is caused by a structural phase transition between theC2/c-24 molecular phase to another molecular phase such asCmca-12. Here, throughab initiocalculations of pressure dependent vibron frequency and direct band gap, we find that the experimental data is consistent with theC2/c-24 phase up to 425 GPa, and suggest that this consistency extends beyond that pressure. Specifically, we find that qualitative changes in the band structure of theC2/c-24 phase lead to a discontinuous drop of the direct band gap, which can explain the observed drop without a structural transition. This alternative scenario, which naturally explains the absence of hysteresis in the measurements, will hopefully motivate further experimental studies to ascertain the structure of the phase above the high pressure 'phase transition'.
Collapse
Affiliation(s)
- Mehmet Dogan
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Sehoon Oh
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Marvin L Cohen
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|