1
|
Hu SQ, Zhao H, Liu XB, Chen Q, Chen DQ, Zhang XY, Meng S. Phonon-Coupled High-Harmonic Generation for Exploring Nonadiabatic Electron-Phonon Interactions. PHYSICAL REVIEW LETTERS 2024; 133:156901. [PMID: 39454146 DOI: 10.1103/physrevlett.133.156901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/01/2024] [Accepted: 08/26/2024] [Indexed: 10/27/2024]
Abstract
High harmonic generation (HHG) have received significant attention for the exploration of material properties and ultrafast dynamics. However, the lack of consideration for couplings between HHG and other quasiparticles, such as phonons, has been impeding the understanding of many-body interactions in HHG. Here, we reveal the many-body electron-phonon mechanism in the quasiparticle-coupled strong-field dynamics by investigating the nonadiabatic (NA) coherent-phonon-coupled HHG. Coherent phonons are revealed to effectively affect HHG via the adiabatic band modulation induced by phonon deformation effects and the NA and nonequilibrium distribution of photocarriers in multiple valleys. The adiabatic and NA mechanisms leave their fingerprint via influencing the phonon period and phase delay in the oscillation of HHG intensity, both of which are experimentally measurable. Investigation of these quantities enables the direct probing of the electron-phonon interaction in materials.
Collapse
|
2
|
Ojeda Collado HP, Michael MH, Skulte J, Rubio A, Mathey L. Equilibrium Parametric Amplification in Raman-Cavity Hybrids. PHYSICAL REVIEW LETTERS 2024; 133:116901. [PMID: 39331971 DOI: 10.1103/physrevlett.133.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/31/2024] [Accepted: 08/06/2024] [Indexed: 09/29/2024]
Abstract
Parametric resonances and amplification have led to extraordinary photoinduced phenomena in pump-probe experiments. While these phenomena manifest themselves in out-of-equilibrium settings, here, we present the striking result of parametric amplification in equilibrium. We demonstrate that quantum and thermal fluctuations of a Raman-active mode amplifies light inside a cavity, at equilibrium, when the Raman mode frequency is twice the cavity mode frequency. This noise-driven amplification leads to the creation of an unusual parametric Raman polariton, intertwining the Raman mode with cavity squeezing fluctuations, with smoking gun signatures in Raman spectroscopy. In the resonant regime, we show the emergence of not only quantum light amplification but also localization and static shift of the Raman mode. Apart from the fundamental interest of equilibrium parametric amplification, our Letter suggests a resonant mechanism for controlling Raman modes and thus matter properties by cavity fluctuations. We conclude by outlining how to compute the Raman-cavity coupling, and suggest possible experimental realizations.
Collapse
|
3
|
Caprini L, Löwen H, Geilhufe RM. Ultrafast entropy production in pump-probe experiments. Nat Commun 2024; 15:94. [PMID: 38169471 PMCID: PMC10761836 DOI: 10.1038/s41467-023-44277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The ultrafast control of materials has opened the possibility to investigate non-equilibrium states of matter with striking properties, such as transient superconductivity and ferroelectricity, ultrafast magnetization and demagnetization, as well as Floquet engineering. The characterization of the ultrafast thermodynamic properties within the material is key for their control and design. Here, we develop the ultrafast stochastic thermodynamics for laser-excited phonons. We calculate the entropy production and heat absorbed from experimental data for single phonon modes of driven materials from time-resolved X-ray scattering experiments where the crystal is excited by a laser pulse. The spectral entropy production is calculated for SrTiO3 and KTaO3 for different temperatures and reveals a striking relation with the power spectrum of the displacement-displacement correlation function by inducing a broad peak beside the eigenmode-resonance.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - R Matthias Geilhufe
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| |
Collapse
|
4
|
Wang C, Liu X, Chen Q, Chen D, Wang Y, Meng S. Coherent-Phonon-Driven Intervalley Scattering and Rabi Oscillation in Multivalley 2D Materials. PHYSICAL REVIEW LETTERS 2023; 131:066401. [PMID: 37625067 DOI: 10.1103/physrevlett.131.066401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023]
Abstract
Resolving the complete electron scattering dynamics mediated by coherent phonons is crucial for understanding electron-phonon couplings beyond equilibrium. Here we present a time-resolved theoretical investigation on strongly coupled ultrafast electron and phonon dynamics in monolayer WSe_{2}, with a focus on the intervalley scattering from the optically "bright" K state to "dark" Q state. We find that the strong coherent lattice vibration along the longitudinal acoustic phonon mode [LA(M)] can drastically promote K-to-Q transition on a timescale of ∼400 fs, comparable with previous experimental observation on thermal-phonon-mediated electron dynamics. Further, this coherent-phonon-driven intervalley scattering occurs in an unconventional steplike manner and further induces an electronic Rabi oscillation. By constructing a two-level model and quantitatively comparing with ab initio dynamic simulations, we uncover the critical role of nonadiabatic coupling effects. Finally, a new strategy is proposed to effectively tune the intervalley scattering rates by varying the coherent phonon amplitude, which could be realized via light-induced nonlinear phononics that we hope will spark experimental investigation.
Collapse
Affiliation(s)
- Chenyu Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinbao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qing Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaxian Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
5
|
Linker T, Nomura KI, Aditya A, Fukshima S, Kalia RK, Krishnamoorthy A, Nakano A, Rajak P, Shimmura K, Shimojo F, Vashishta P. Exploring far-from-equilibrium ultrafast polarization control in ferroelectric oxides with excited-state neural network quantum molecular dynamics. SCIENCE ADVANCES 2022; 8:eabk2625. [PMID: 35319991 PMCID: PMC8942355 DOI: 10.1126/sciadv.abk2625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Ferroelectric materials exhibit a rich range of complex polar topologies, but their study under far-from-equilibrium optical excitation has been largely unexplored because of the difficulty in modeling the multiple spatiotemporal scales involved quantum-mechanically. To study optical excitation at spatiotemporal scales where these topologies emerge, we have performed multiscale excited-state neural network quantum molecular dynamics simulations that integrate quantum-mechanical description of electronic excitation and billion-atom machine learning molecular dynamics to describe ultrafast polarization control in an archetypal ferroelectric oxide, lead titanate. Far-from-equilibrium quantum simulations reveal a marked photo-induced change in the electronic energy landscape and resulting cross-over from ferroelectric to octahedral tilting topological dynamics within picoseconds. The coupling and frustration of these dynamics, in turn, create topological defects in the form of polar strings. The demonstrated nexus of multiscale quantum simulation and machine learning will boost not only the emerging field of ferroelectric topotronics but also broader optoelectronic applications.
Collapse
Affiliation(s)
- Thomas Linker
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Ken-ichi Nomura
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Anikeya Aditya
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Shogo Fukshima
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Rajiv K. Kalia
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Aravind Krishnamoorthy
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Pankaj Rajak
- Amazon, 410 Terry Ave. North, Seattle, WA 98109-5210 USA
| | - Kohei Shimmura
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Fuyuki Shimojo
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| |
Collapse
|
6
|
Narang P, Garcia CAC, Felser C. The topology of electronic band structures. NATURE MATERIALS 2021; 20:293-300. [PMID: 33139890 DOI: 10.1038/s41563-020-00820-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/03/2020] [Indexed: 05/05/2023]
Abstract
The study of topology as it relates to physical systems has rapidly accelerated during the past decade. Critical to the realization of new topological phases is an understanding of the materials that exhibit them and precise control of the materials chemistry. The convergence of new theoretical methods using symmetry indicators to identify topological material candidates and the synthesis of high-quality single crystals plays a key role, warranting discussion and context at an accessible level. This Perspective provides a broad introduction to topological phases, their known properties, and material realizations. We focus on recent work in topological Weyl and Dirac semimetals, with a particular emphasis on magnetic Weyl semimetals and emergent fermions in chiral crystals and their extreme responses to excitations, and we highlight areas where the field can continue to make remarkable discoveries. We further examine open questions and directions for the topological materials science community to pursue, including exploration of non-equilibrium properties of Weyl semimetals and cavity-dressed topological materials.
Collapse
Affiliation(s)
- Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Christina A C Garcia
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Claudia Felser
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany
| |
Collapse
|