1
|
Anka MF, de Oliveira TR, Jonathan D. Work and efficiency fluctuations in a quantum Otto cycle with idle levels. Phys Rev E 2024; 109:064129. [PMID: 39021004 DOI: 10.1103/physreve.109.064129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
We study the performance of a quantum Otto heat engine with two spins coupled by a Heisenberg interaction, taking into account not only the mean values of work and efficiency but also their fluctuations. We first show that, for this system, the output work and its fluctuations are directly related to the magnetization and magnetic susceptibility of the system at equilibrium with either heat bath. We analyze the regions where the work extraction can be done with low relative fluctuation for a given range of temperatures, while still achieving an efficiency higher than that of a single spin system heat engine. In particular, we find that, due to the presence of "idle" levels, an increase in the interspin coupling can either increase or decrease fluctuations, depending on the other parameters. In all cases, however, we find that the relative fluctuations in work or efficiency remain large, implying that this microscopic engine is not very reliable as a source of work.
Collapse
|
2
|
Astakhov AM, Petrovskii VS, Frolkina MA, Markina AA, Muratov AD, Valov AF, Avetisov VA. Spontaneous Vibrations and Stochastic Resonance of Short Oligomeric Springs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:41. [PMID: 38202496 PMCID: PMC10780788 DOI: 10.3390/nano14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
There is growing interest in molecular structures that exhibit dynamics similar to bistable mechanical systems. These structures have the potential to be used as two-state operating units for various functional purposes. Particularly intriguing are the bistable systems that display spontaneous vibrations and stochastic resonance. Previously, via molecular dynamics simulations, it was discovered that short pyridine-furan springs in water, when subjected to stretching with power loads, exhibit the bistable dynamics of a Duffing oscillator. In this study, we extend these simulations to include short pyridine-pyrrole and pyridine-furan springs in a hydrophobic solvent. Our findings demonstrate that these systems also display the bistable dynamics, accompanied by spontaneous vibrations and stochastic resonance activated by thermal noise.
Collapse
Affiliation(s)
- Alexey M. Astakhov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Vladislav S. Petrovskii
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Maria A. Frolkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Anastasia A. Markina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Alexander D. Muratov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Alexander F. Valov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Vladik A. Avetisov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| |
Collapse
|
3
|
Ptaszyński K. Non-Markovian thermal operations boosting the performance of quantum heat engines. Phys Rev E 2022; 106:014114. [PMID: 35974499 DOI: 10.1103/physreve.106.014114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
It is investigated whether non-Markovianity, i.e., the memory effects resulting from the coupling of the system to its environment, can be beneficial for the performance of quantum heat engines. Specifically, two physical models are considered. The first one is a well-known single-qubit Otto engine; the non-Markovian behavior is there implemented by replacing standard thermalization strokes with so-called extremal thermal operations which cannot be realized without the memory effects. The second one is a three-stroke engine in which the cycle consists of two extremal thermal operations and a single qubit rotation. It is shown that the non-Markovian Otto engine can generate more work-per-cycle for a given efficiency than its Markovian counterpart, whereas performance of both setups is superior to the three-stroke engine. Furthermore, both the non-Markovian Otto engine and the three-stroke engine can reduce the work fluctuations in comparison with the Markovian Otto engine, with their relative advantage depending on the performance target. This demonstrates the beneficial influence of non-Markovianity on both the average performance and the stability of operation of quantum heat engines.
Collapse
Affiliation(s)
- Krzysztof Ptaszyński
- Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
4
|
Strand NE, Vroylandt H, Gingrich T. Using tensor network states for multi-particle Brownian ratchets. J Chem Phys 2022; 156:221103. [DOI: 10.1063/5.0097332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The study of Brownian ratchets has taught how time-periodic driving supports a time-periodic steady state that generates nonequilibrium transport. When a single particle is transported in one dimension, it is possible to rationalize the current in terms of the potential, but experimental efforts have ventured beyond that single-body case to systems with many interacting carriers. Working with a lattice model of volume-excluding particles in one dimension, we analyze the impact of interactions on a flashing ratchet's current. To surmount the many-body problem, we employ the time-dependent variational principle (TDVP) applied to binary tree tensor networks (BTTN). Rather than propagating individual trajectories, the tensor network approach propagates a distribution over many-body configurations via a controllable variational approximation. The calculations, which reproduce Gillespie trajectory sampling, identify and explain a shift in the frequency of maximum current to higher driving frequency as the lattice occupancy increases.
Collapse
Affiliation(s)
- Nils E Strand
- Chemistry, Northwestern University, United States of America
| | | | | |
Collapse
|
5
|
Wadia NS, Zarcone RV, DeWeese MR. Solution to the Fokker-Planck equation for slowly driven Brownian motion: Emergent geometry and a formula for the corresponding thermodynamic metric. Phys Rev E 2022; 105:034130. [PMID: 35428124 DOI: 10.1103/physreve.105.034130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Considerable progress has recently been made with geometrical approaches to understanding and controlling small out-of-equilibrium systems, but a mathematically rigorous foundation for these methods has been lacking. Towards this end, we develop a perturbative solution to the Fokker-Planck equation for one-dimensional driven Brownian motion in the overdamped limit enabled by the spectral properties of the corresponding single-particle Schrödinger operator. The perturbation theory is in powers of the inverse characteristic timescale of variation of the fastest varying control parameter, measured in units of the system timescale, which is set by the smallest eigenvalue of the corresponding Schrödinger operator. It applies to any Brownian system for which the Schrödinger operator has a confining potential. We use the theory to rigorously derive an exact formula for a Riemannian "thermodynamic" metric in the space of control parameters of the system. We show that up to second-order terms in the perturbation theory, optimal dissipation-minimizing driving protocols minimize the length defined by this metric. We also show that a previously proposed metric is calculable from our exact formula with corrections that are exponentially suppressed in a characteristic length scale. We illustrate our formula using the two-dimensional example of a harmonic oscillator with time-dependent spring constant in a time-dependent electric field. Lastly, we demonstrate that the Riemannian geometric structure of the optimal control problem is emergent; it derives from the form of the perturbative expansion for the probability density and persists to all orders of the expansion.
Collapse
Affiliation(s)
- Neha S Wadia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ryan V Zarcone
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA.,Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.,Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Meibohm J, Esposito M. Finite-Time Dynamical Phase Transition in Nonequilibrium Relaxation. PHYSICAL REVIEW LETTERS 2022; 128:110603. [PMID: 35362998 DOI: 10.1103/physrevlett.128.110603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
We uncover a finite-time dynamical phase transition in the thermal relaxation of a mean-field magnetic model. The phase transition manifests itself as a cusp singularity in the probability distribution of the magnetization that forms at a critical time. The transition is due to a sudden switch in the dynamics, characterized by a dynamical order parameter. We derive a dynamical Landau theory for the transition that applies to a range of systems with scalar, parity-invariant order parameters. Close to criticalilty, our theory reveals an exact mapping between the dynamical and equilibrium phase transitions of the magnetic model, and implies critical exponents of mean-field type. We argue that interactions between nearby saddle points, neglected at the mean-field level, may lead to critical, spatiotemporal fluctuations of the order parameter, and thus give rise to novel, dynamical critical phenomena.
Collapse
Affiliation(s)
- Jan Meibohm
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
7
|
Fiore CE, Harunari PE, Noa CEF, Landi GT. Current fluctuations in nonequilibrium discontinuous phase transitions. Phys Rev E 2021; 104:064123. [PMID: 35030860 DOI: 10.1103/physreve.104.064123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022]
Abstract
Discontinuous phase transitions out of equilibrium can be characterized by the behavior of macroscopic stochastic currents. But while much is known about the average current, the situation is much less understood for higher statistics. In this paper, we address the consequences of the diverging metastability lifetime-a hallmark of discontinuous transitions-in the fluctuations of arbitrary thermodynamic currents, including the entropy production. In particular, we center our discussion on the conditional statistics, given which phase the system is in. We highlight the interplay between integration window and metastability lifetime, which is not manifested in the average current, but strongly influences the fluctuations. We introduce conditional currents and find, among other predictions, their connection to average and scaled variance through a finite-time version of large deviation theory and a minimal model. Our results are then further verified in two paradigmatic models of discontinuous transitions: Schlögl's model of chemical reactions, and a 12-state Potts model subject to two baths at different temperatures.
Collapse
Affiliation(s)
- C E Fiore
- Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil
| | - Pedro E Harunari
- Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil.,Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg L-1511, G.D. Luxembourg
| | - C E Fernández Noa
- Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil
| | - Gabriel T Landi
- Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil
| |
Collapse
|
8
|
Avetisov VA, Frolkina MA, Markina AA, Muratov AD, Petrovskii VS. Short Pyridine-Furan Springs Exhibit Bistable Dynamics of Duffing Oscillators. NANOMATERIALS 2021; 11:nano11123264. [PMID: 34947612 PMCID: PMC8707925 DOI: 10.3390/nano11123264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
The intensive development of nanodevices acting as two-state systems has motivated the search for nanoscale molecular structures whose dynamics are similar to those of bistable mechanical systems, such as Euler arches and Duffing oscillators. Of particular interest are the molecular structures capable of spontaneous vibrations and stochastic resonance. Recently, oligomeric molecules that were a few nanometers in size and exhibited the bistable dynamics of an Euler arch were identified through molecular dynamics simulations of short fragments of thermo-responsive polymers subject to force loading. In this article, we present molecular dynamics simulations of short pyridine-furan springs a few nanometers in size and demonstrate the bistable dynamics of a Duffing oscillator with thermally-activated spontaneous vibrations and stochastic resonance.
Collapse
|
9
|
Jiao G, Zhu S, He J, Ma Y, Wang J. Fluctuations in irreversible quantum Otto engines. Phys Rev E 2021; 103:032130. [PMID: 33862833 DOI: 10.1103/physreve.103.032130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/01/2021] [Indexed: 11/07/2022]
Abstract
We derive the general probability distribution function of stochastic work for quantum Otto engines in which both the isochoric and driving processes are irreversible due to finite time duration. The time-dependent work fluctuations, average work, and thermodynamic efficiency are explicitly obtained for a complete cycle operating with an analytically solvable two-level system. The effects of the irreversibility originating from finite-time cycle operation on the thermodynamic efficiency, work fluctuations, and relative power fluctuations are discussed.
Collapse
Affiliation(s)
- Guangqian Jiao
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Shoubao Zhu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China.,State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Liu J, Segal D. Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators. Phys Rev E 2021; 103:032138. [PMID: 33862758 DOI: 10.1103/physreve.103.032138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a tradeoff relation between precision and dissipation, deepening our understanding of the performance of quantum thermal machines. Here, we examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime. To achieve the current statistics, we perform a full counting statistics simulation of the Redfield quantum master equation. We focus on steady-state quantum absorption refrigerators where nonzero coherence between eigenstates can either suppress or enhance the cooling power, compared with the incoherent limit. In either scenario, we find enhanced relative noise of the cooling power (standard deviation of the power over the mean) in the presence of system coherence, thereby corroborating the thermodynamic uncertainty relation. Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Physics, 60 Saint George Street, University of Toronto, Toronto, Ontario, Canada M5S 1A7
| |
Collapse
|