1
|
Yang YB, Wang JH, Li K, Xu Y. Higher-order topological phases in crystalline and non-crystalline systems: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:283002. [PMID: 38574683 DOI: 10.1088/1361-648x/ad3abd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
In recent years, higher-order topological phases have attracted great interest in various fields of physics. These phases have protected boundary states at lower-dimensional boundaries than the conventional first-order topological phases due to the higher-order bulk-boundary correspondence. In this review, we summarize current research progress on higher-order topological phases in both crystalline and non-crystalline systems. We firstly introduce prototypical models of higher-order topological phases in crystals and their topological characterizations. We then discuss effects of quenched disorder on higher-order topology and demonstrate disorder-induced higher-order topological insulators. We also review the theoretical studies on higher-order topological insulators in amorphous systems without any crystalline symmetry and higher-order topological phases in non-periodic lattices including quasicrystals, hyperbolic lattices, and fractals, which have no crystalline counterparts. We conclude the review by a summary of experimental realizations of higher-order topological phases and discussions on potential directions for future study.
Collapse
Affiliation(s)
- Yan-Bin Yang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China, People's Republic of China
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiong-Hao Wang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kai Li
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yong Xu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| |
Collapse
|
2
|
Pan XH, Chen L, Liu DE, Zhang FC, Liu X. Majorana Zero Modes Induced by the Meissner Effect at Small Magnetic Field. PHYSICAL REVIEW LETTERS 2024; 132:036602. [PMID: 38307040 DOI: 10.1103/physrevlett.132.036602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/28/2023] [Indexed: 02/04/2024]
Abstract
One key difficulty in realizing Majorana zero modes (MZMs) is the required high magnetic field, which causes serious issues, e.g., shrinks the superconducting gap, reduces topological region, and weakens their robustness against disorders. In this Letter, we propose that the Meissner effect can bring the topological superconducting phase to a superconductor/topological-insulator/superconductor (SC/TI/SC) hybrid system. Remarkably, the required magnetic field strength (<10 mT) to support MZMs has been reduced by several orders of magnitude compared to that (>0.5 T) in the previous schemes. Tuning the phase difference between the top and bottom superconductors can control the number and position of the MZMs. In addition, we account for the electrostatic potential in the superconductor/topological-insulator (SC/TI) interface through the self-consistent Schrödinger-Poisson calculation, which shows the experimental accessibility of our proposal. Our proposal only needs a small magnetic field of less than 10 mT and is robust against the chemical potential fluctuation, which makes the SC/TI/SC hybrid an ideal Majorana platform.
Collapse
Affiliation(s)
- Xiao-Hong Pan
- School of Physics and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hubei Key Laboratory of Gravitation and Quantum Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Wuhan Institute of Quantum Technology, Wuhan, Hubei 430074, China
| | - Li Chen
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Dong E Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Fu-Chun Zhang
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Liu
- School of Physics and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Hubei Key Laboratory of Gravitation and Quantum Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Wuhan Institute of Quantum Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Wu YJ, Tu W, Li N. Majorana corner states in an attractive quantum spin Hall insulator with opposite in-plane Zeeman energy at two sublattice sites. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:375601. [PMID: 35793693 DOI: 10.1088/1361-648x/ac7f19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Higher-order topological superconductors and superfluids (SFs) host lower-dimensional Majorana corner and hinge states since novel topology exhibitions on boundaries. While such topological nontrivial phases have been explored extensively, more possible schemes are necessary for engineering Majorana states. In this paper we propose Majorana corner states could be realized in a two-dimensional attractive quantum spin-Hall insulator with opposite in-plane Zeeman energy at two sublattice sites. The appropriate Zeeman field leads to the opposite Dirac mass for adjacent edges of a square sample, and naturally induce Majorana corner states. This topological phase can be characterized by Majorana edge polarizations, and it is robust against perturbations on random potentials and random phase fluctuations as long as the edge gap remains open. Our work provides a new possibility to realize a second-order topological SF in two dimensions and engineer Majorana corner states.
Collapse
Affiliation(s)
- Ya-Jie Wu
- School of Sciences, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Wei Tu
- School of Sciences, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Ning Li
- School of Sciences, Xi'an Technological University, Xi'an 710032, People's Republic of China
| |
Collapse
|
4
|
Lu B, Zhang Y. Tunable Majorana corner modes by orbital-dependent exchange interaction in a two-dimensional topological superconductor. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:305302. [PMID: 35580592 DOI: 10.1088/1361-648x/ac709e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
We theoretically study the effect of orbital-dependent exchange field in the formation of second order topological superconductors. We demonstrate that changing the orbital difference can induce topological transition and the Majorana corner modes therein can be manipulated. We further propose to detect the corner modes via a normal probe terminal. The conductance quantization is found to be robust to changes of the relevant system parameters.
Collapse
Affiliation(s)
- Bo Lu
- Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yiying Zhang
- Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
5
|
Chen R, Liu T, Wang CM, Lu HZ, Xie XC. Field-Tunable One-Sided Higher-Order Topological Hinge States in Dirac Semimetals. PHYSICAL REVIEW LETTERS 2021; 127:066801. [PMID: 34420339 DOI: 10.1103/physrevlett.127.066801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Recently, higher-order topological matter and 3D quantum Hall effects have attracted a great amount of attention. The Fermi-arc mechanism of the 3D quantum Hall effect proposed to exist in Weyl semimetals is characterized by the one-sided hinge states, which do not exist in all the previous quantum Hall systems, and more importantly, pose a realistic example of the higher-order topological matter. The experimental effort so far is in the Dirac semimetal Cd_{3}As_{2}, where, however, time-reversal symmetry leads to hinge states on both sides of the top and bottom surfaces, instead of the aspired one-sided hinge states. We propose that under a tilted magnetic field, the hinge states in Cd_{3}As_{2}-like Dirac semimetals can be one sided, highly tunable by field direction and Fermi energy, and robust against weak disorder. Furthermore, we propose a scanning tunneling Hall measurement to detect the one-sided hinge states. Our results will be insightful for exploring not only the quantum Hall effects beyond two dimensions, but also other higher-order topological insulators in the future.
Collapse
Affiliation(s)
- Rui Chen
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- School of Physics, Southeast University, Nanjing 211189, China
| | - Tianyu Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
| | - C M Wang
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- Department of Physics, Shanghai Normal University, Shanghai 200234, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Ma DS, Xu Y, Chiu CS, Regnault N, Houck AA, Song Z, Bernevig BA. Spin-Orbit-Induced Topological Flat Bands in Line and Split Graphs of Bipartite Lattices. PHYSICAL REVIEW LETTERS 2020; 125:266403. [PMID: 33449777 DOI: 10.1103/physrevlett.125.266403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Topological flat bands, such as the band in twisted bilayer graphene, are becoming a promising platform to study topics such as correlation physics, superconductivity, and transport. In this Letter, we introduce a generic approach to construct two-dimensional (2D) topological quasiflat bands from line graphs and split graphs of bipartite lattices. A line graph or split graph of a bipartite lattice exhibits a set of flat bands and a set of dispersive bands. The flat band connects to the dispersive bands through a degenerate state at some momentum. We find that, with spin-orbit coupling (SOC), the flat band becomes quasiflat and gapped from the dispersive bands. By studying a series of specific line graphs and split graphs of bipartite lattices, we find that (i) if the flat band (without SOC) has inversion or C_{2} symmetry and is nondegenerate, then the resulting quasiflat band must be topologically nontrivial, and (ii) if the flat band (without SOC) is degenerate, then there exists a SOC potential such that the resulting quasiflat band is topologically nontrivial. This generic mechanism serves as a paradigm for finding topological quasiflat bands in 2D crystalline materials and metamaterials.
Collapse
Affiliation(s)
- Da-Shuai Ma
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanfeng Xu
- Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
| | - Christie S Chiu
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
- Princeton Center for Complex Materials, Princeton University, Princeton, New Jersey 08540, USA
| | - Nicolas Regnault
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris 75005, France
| | - Andrew A Houck
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
| | - Zhida Song
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| | - B Andrei Bernevig
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
7
|
Ghorashi SAA, Li T, Hughes TL. Higher-Order Weyl Semimetals. PHYSICAL REVIEW LETTERS 2020; 125:266804. [PMID: 33449787 DOI: 10.1103/physrevlett.125.266804] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, which we dub a 2nd-order Weyl node, that can be identified as a transition in momentum space in which both the Chern number and a higher order topological invariant change. As a proof of concept we use a model of stacked higher order quadrupole insulators (QI) to identify three types of WSM phases: 1st order, 2nd order, and hybrid order. The model can also realize type-II and hybrid-tilt WSMs with various surface and hinge arcs. After a comprehensive analysis of the topological properties of various HOWSMs, we turn to their physical implications that show the very distinct behavior of 2nd-order Weyl nodes when they are gapped out. We obtain three remarkable results: (i) the coupling of a 2nd-order Weyl phase with a conventional 1st-order one can lead to a hybrid-order topological insulator having coexisting surface cones and flat hinge arcs that are independent and not attached to each other. (ii) A nested 2nd-order inversion-symmetric WSM by a charge-density wave (CDW) order generates an insulating phase having coexisting flatband surface and hinge states all over the Brillouin zone. (iii) A CDW order in a time-reversal symmetric higher-order WSM gaps out a 2nd-order node with a 1st-order node and generates an insulating phase having coexisting surface Dirac cone and hinge arcs. Moreover, we show that a measurement of charge density in the presence of magnetic flux can help to identify some classes of 2nd-order WSMs. Finally, we show that periodic driving can be utilized as a way for generating HOWSMs. Our results are relevant to metamaterials as well as various phases of Cd_{3}As_{2}, KMgBi, and rutile-structure PtO_{2} that have been predicted to realize higher order Dirac semimetals.
Collapse
Affiliation(s)
| | - Tianhe Li
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Taylor L Hughes
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|