1
|
Finger F, Rosa-Medina R, Reiter N, Christodoulou P, Donner T, Esslinger T. Spin- and Momentum-Correlated Atom Pairs Mediated by Photon Exchange and Seeded by Vacuum Fluctuations. PHYSICAL REVIEW LETTERS 2024; 132:093402. [PMID: 38489609 DOI: 10.1103/physrevlett.132.093402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024]
Abstract
Engineering pairs of massive particles that are simultaneously correlated in their external and internal degrees of freedom is a major challenge, yet essential for advancing fundamental tests of physics and quantum technologies. In this Letter, we experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes. This mechanism couples atoms from a degenerate Bose gas via a superradiant photon-exchange process in an optical cavity, producing pairs via a single channel or two discernible channels. The scheme is independent of collisional interactions, fast, and tunable. We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space. We characterize the emergent pair statistics and find that the observed dynamics is consistent with being primarily seeded by vacuum fluctuations in the corresponding atomic modes. Together with our observations of coherent many-body oscillations involving well-defined momentum modes, our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments using entangled matter waves.
Collapse
Affiliation(s)
- Fabian Finger
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Rodrigo Rosa-Medina
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicola Reiter
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Tobias Donner
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Tilman Esslinger
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Sundar B, Barberena D, Rey AM, Orioli AP. Squeezing Multilevel Atoms in Dark States via Cavity Superradiance. PHYSICAL REVIEW LETTERS 2024; 132:033601. [PMID: 38307070 DOI: 10.1103/physrevlett.132.033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/13/2023] [Accepted: 09/19/2023] [Indexed: 02/04/2024]
Abstract
We describe a method to create and store scalable and long-lived entangled spin-squeezed states within a manifold of many-body cavity dark states using collective emission of light from multilevel atoms inside an optical cavity. We show that the system can be tuned to generate squeezing in a dark state where it will be immune to superradiance. We also show more generically that squeezing can be generated using a combination of superradiance and coherent driving in a bright state, and subsequently be transferred via single-particle rotations to a dark state where squeezing can be stored. Our findings, readily testable in current optical cavity experiments with alkaline-earth-like atoms, can open a path for dissipative generation and storage of metrologically useful states in optical transitions.
Collapse
Affiliation(s)
- Bhuvanesh Sundar
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Diego Barberena
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Asier Piñeiro Orioli
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
3
|
Hetzel M, Pezzè L, Pür C, Quensen M, Hüper A, Geng J, Kruse J, Santos L, Ertmer W, Smerzi A, Klempt C. Tomography of a Number-Resolving Detector by Reconstruction of an Atomic Many-Body Quantum State. PHYSICAL REVIEW LETTERS 2023; 131:260601. [PMID: 38215377 DOI: 10.1103/physrevlett.131.260601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2023] [Indexed: 01/14/2024]
Abstract
The high-fidelity analysis of many-body quantum states of indistinguishable atoms requires the accurate counting of atoms. Here we report the tomographic reconstruction of an atom-number-resolving detector. The tomography is performed with an ultracold rubidium ensemble that is prepared in a coherent spin state by driving a Rabi coupling between the two hyperfine clock levels. The coupling is followed by counting the occupation number in one level. We characterize the fidelity of our detector and show that a negative-valued Wigner function is associated with it. Our results offer an exciting perspective for the high-fidelity reconstruction of entangled states and can be applied for a future demonstration of Heisenberg-limited atom interferometry.
Collapse
Affiliation(s)
- Mareike Hetzel
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Luca Pezzè
- QSTAR and INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Cebrail Pür
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Martin Quensen
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Andreas Hüper
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Jiao Geng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jens Kruse
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Luis Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - Wolfgang Ertmer
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Augusto Smerzi
- QSTAR and INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Carsten Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| |
Collapse
|
4
|
Xin L, Barrios M, Cohen JT, Chapman MS. Long-Lived Squeezed Ground States in a Quantum Spin Ensemble. PHYSICAL REVIEW LETTERS 2023; 131:133402. [PMID: 37832022 DOI: 10.1103/physrevlett.131.133402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/07/2023] [Indexed: 10/15/2023]
Abstract
We generate spin squeezed ground states in an atomic spin-1 Bose-Einstein condensate tuned near the quantum-critical point separating the different spin phases of the interacting ensemble using a novel nonadiabatic technique. In contrast to typical nonequilibrium methods for preparing atomic squeezed states by quenching through a quantum phase transition, squeezed ground states are time stationary with a constant quadrature squeezing angle. A squeezed ground state with 6-8 dB of squeezing and a constant squeezing angle is demonstrated. The long-term evolution of the squeezed ground state is measured and shows gradual decrease in the degree of squeezing over 2 s that is well modeled by a slow tuning of the Hamiltonian due to the loss of atomic density. Interestingly, modeling the gradual decrease does not require additional spin decoherence models despite a loss of 75% of the atoms.
Collapse
Affiliation(s)
- Lin Xin
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Maryrose Barrios
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Julia T Cohen
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Michael S Chapman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
5
|
Bilitewski T, Rey AM. Manipulating Growth and Propagation of Correlations in Dipolar Multilayers: From Pair Production to Bosonic Kitaev Models. PHYSICAL REVIEW LETTERS 2023; 131:053001. [PMID: 37595247 DOI: 10.1103/physrevlett.131.053001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/14/2023] [Indexed: 08/20/2023]
Abstract
We study the nonequilibrium dynamics of dipoles confined in multiple stacked two-dimensional layers realizing a long-range interacting quantum spin 1/2 XXX model. We demonstrate that strong in-plane interactions can protect a manifold of collective layer dynamics. This then allows us to map the many-body spin dynamics to bosonic models. In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics, resulting in exponential production of entangled pairs and generation of metrologically useful entanglement from initially prepared product states. In multilayer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction. Our study illustrates how the control over interactions, lattice geometry, and state preparation in interacting dipolar systems uniquely afforded by AMO platforms such as Rydberg and magnetic atoms, polar molecules, or trapped ions allows for the control over the temporal and spatial propagation of correlations for applications in quantum sensing and quantum simulation.
Collapse
Affiliation(s)
- Thomas Bilitewski
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
6
|
Sundar B, Barberena D, Orioli AP, Chu A, Thompson JK, Rey AM, Lewis-Swan RJ. Bosonic Pair Production and Squeezing for Optical Phase Measurements in Long-Lived Dipoles Coupled to a Cavity. PHYSICAL REVIEW LETTERS 2023; 130:113202. [PMID: 37001062 DOI: 10.1103/physrevlett.130.113202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by two-mode squeezing of effective bosonic quadratures. The mapping between an effective bosonic model and the natural spin description of the dipoles allows us to realize the analog of optical homodyne measurements via straightforward global rotations and population measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles). We discuss a specific implementation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open unique opportunities for next-generation optical atomic clocks.
Collapse
Affiliation(s)
- Bhuvanesh Sundar
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Diego Barberena
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Asier Piñeiro Orioli
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Anjun Chu
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Robert J Lewis-Swan
- Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA
- Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
7
|
Płodzień M, Lewenstein M, Witkowska E, Chwedeńczuk J. One-Axis Twisting as a Method of Generating Many-Body Bell Correlations. PHYSICAL REVIEW LETTERS 2022; 129:250402. [PMID: 36608238 DOI: 10.1103/physrevlett.129.250402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate that the one-axis twisting (OAT), a versatile method of creating nonclassical states of bosonic qubits, is a powerful source of many-body Bell correlations. We develop a fully analytical and universal treatment of the process, which allows us to identify the critical time at which the Bell correlations emerge and predict the depth of Bell correlations at all subsequent times. Our findings are illustrated with a highly nontrivial example of the OAT dynamics generated using the Bose-Hubbard model.
Collapse
Affiliation(s)
- Marcin Płodzień
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Maciej Lewenstein
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Emilia Witkowska
- Institute of Physics PAS, Aleja Lotnikow 32/46, 02-668 Warszawa, Poland
| | - Jan Chwedeńczuk
- Faculty of Physics, University of Warsaw, ulica Pasteura 5, PL-02-093 Warsaw, Poland
| |
Collapse
|
8
|
Hernández Yanes T, Płodzień M, Mackoit Sinkevičienė M, Žlabys G, Juzeliūnas G, Witkowska E. One- and Two-Axis Squeezing via Laser Coupling in an Atomic Fermi-Hubbard Model. PHYSICAL REVIEW LETTERS 2022; 129:090403. [PMID: 36083675 DOI: 10.1103/physrevlett.129.090403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Generation, storage, and utilization of correlated many-body quantum states are crucial objectives of future quantum technologies and metrology. Such states can be generated by the spin-squeezing protocols, i.e., one-axis twisting and two-axis countertwisting. In this Letter, we show activation of these two squeezing mechanisms in a system composed of ultracold atomic fermions in the Mott insulating phase by a position-dependent laser coupling of atomic internal states. Realization of both the squeezing protocols is feasible in the current state-of-the-art experiments.
Collapse
Affiliation(s)
- T Hernández Yanes
- Institute of Physics PAS, Aleja Lotnikow 32/46, 02-668 Warszawa, Poland
| | - M Płodzień
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
| | - M Mackoit Sinkevičienė
- Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, LT-10257, Vilnius, Lithuania
| | - G Žlabys
- Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, LT-10257, Vilnius, Lithuania
| | - G Juzeliūnas
- Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, LT-10257, Vilnius, Lithuania
| | - E Witkowska
- Institute of Physics PAS, Aleja Lotnikow 32/46, 02-668 Warszawa, Poland
| |
Collapse
|
9
|
Alaoui YA, Zhu B, Muleady SR, Dubosclard W, Roscilde T, Rey AM, Laburthe-Tolra B, Vernac L. Measuring Correlations from the Collective Spin Fluctuations of a Large Ensemble of Lattice-Trapped Dipolar Spin-3 Atoms. PHYSICAL REVIEW LETTERS 2022; 129:023401. [PMID: 35867449 DOI: 10.1103/physrevlett.129.023401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
We perform collective spin measurements to study the buildup of two-body correlations between ≈10^{4} spin s=3 chromium atoms pinned in a 3D optical lattice. The spins interact via long range and anisotropic dipolar interactions. From the fluctuations of total magnetization, measured at the standard quantum limit, we estimate the dynamical growth of the connected pairwise correlations associated with magnetization. The quantum nature of the correlations is assessed by comparisons with analytical short- and long-time expansions and numerical simulations. Our Letter shows that measuring fluctuations of spin populations for s>1/2 spins provides new ways to characterize correlations in quantum many-body systems.
Collapse
Affiliation(s)
- Youssef Aziz Alaoui
- Université Paris 13, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France
- CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - Bihui Zhu
- Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA and Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Sean Robert Muleady
- JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - William Dubosclard
- Université Paris 13, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France
- CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - Tommaso Roscilde
- Université Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Ana Maria Rey
- JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Bruno Laburthe-Tolra
- Université Paris 13, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France
- CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - Laurent Vernac
- Université Paris 13, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France
- CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| |
Collapse
|
10
|
An FA, Sundar B, Hou J, Luo XW, Meier EJ, Zhang C, Hazzard KRA, Gadway B. Nonlinear Dynamics in a Synthetic Momentum-State Lattice. PHYSICAL REVIEW LETTERS 2021; 127:130401. [PMID: 34623847 DOI: 10.1103/physrevlett.127.130401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The scope of analog simulation in atomic, molecular, and optical systems has expanded greatly over the past decades. Recently, the idea of synthetic dimensions-in which transport occurs in a space spanned by internal or motional states coupled by field-driven transitions-has played a key role in this expansion. While approaches based on synthetic dimensions have led to rapid advances in single-particle Hamiltonian engineering, strong interaction effects have been conspicuously absent from most synthetic dimensions platforms. Here, in a lattice of coupled atomic momentum states, we show that atomic interactions result in large and qualitative changes to dynamics in the synthetic dimension. We explore how the interplay of nonlinear interactions and coherent tunneling enriches the dynamics of a one-band tight-binding model giving rise to macroscopic self-trapping and phase-driven Josephson dynamics with a nonsinusoidal current-phase relationship, which can be viewed as stemming from a nonlinear band structure arising from interactions.
Collapse
Affiliation(s)
- Fangzhao Alex An
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | - Bhuvanesh Sundar
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
- JILA, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Junpeng Hou
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Xi-Wang Luo
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Eric J Meier
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | - Chuanwei Zhang
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Kaden R A Hazzard
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
| | - Bryce Gadway
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| |
Collapse
|
11
|
Evrard B, Qu A, Dalibard J, Gerbier F. Observation of fragmentation of a spinor Bose-Einstein condensate. Science 2021; 373:1340-1343. [PMID: 34529460 DOI: 10.1126/science.abd8206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bertrand Evrard
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 75005 Paris, France
| | - An Qu
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 75005 Paris, France
| | - Jean Dalibard
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 75005 Paris, France
| | - Fabrice Gerbier
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
12
|
Evrard B, Qu A, Dalibard J, Gerbier F. From Many-Body Oscillations to Thermalization in an Isolated Spinor Gas. PHYSICAL REVIEW LETTERS 2021; 126:063401. [PMID: 33635710 DOI: 10.1103/physrevlett.126.063401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The dynamics of a many-body system can take many forms, from a purely reversible evolution to fast thermalization. Here we show experimentally and numerically that an assembly of spin-1 atoms all in the same spatial mode allows one to explore this wide variety of behaviors. When the system can be described by a Bogoliubov analysis, the relevant energy spectrum is linear and leads to undamped oscillations of many-body observables. Outside this regime, the nonlinearity of the spectrum leads to irreversibility, characterized by a universal behavior. When the integrability of the Hamiltonian is broken, a chaotic dynamics emerges and leads to thermalization, in agreement with the eigenstate thermalization hypothesis paradigm.
Collapse
Affiliation(s)
- Bertrand Evrard
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - An Qu
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Jean Dalibard
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Fabrice Gerbier
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
13
|
Guo SF, Chen F, Liu Q, Xue M, Chen JJ, Cao JH, Mao TW, Tey MK, You L. Faster State Preparation across Quantum Phase Transition Assisted by Reinforcement Learning. PHYSICAL REVIEW LETTERS 2021; 126:060401. [PMID: 33635691 DOI: 10.1103/physrevlett.126.060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
An energy gap develops near quantum critical point of quantum phase transition in a finite many-body (MB) system, facilitating the ground state transformation by adiabatic parameter change. In real application scenarios, however, the efficacy for such a protocol is compromised by the need to balance finite system lifetime with adiabaticity, as exemplified in a recent experiment that prepares three-mode balanced Dicke state near deterministically [Y.-Q. Zou et al., Proc. Natl. Acad. Sci. U.S.A. 115, 6381 (2018)PNASA60027-842410.1073/pnas.1715105115]. Instead of tracking the instantaneous ground state as unanimously required for most adiabatic crossing, this work reports a faster sweeping policy taking advantage of excited level dynamics. It is obtained based on deep reinforcement learning (DRL) from a multistep training scheme we develop. In the absence of loss, a fidelity ≥99% between prepared and the target Dicke state is achieved over a small fraction of the adiabatically required time. When loss is included, training is carried out according to an operational benchmark, the interferometric sensitivity of the prepared state instead of fidelity, leading to better sensitivity in about half of the previously reported time. Implemented in a Bose-Einstein condensate of ∼10^{4} ^{87}Rb atoms, the balanced three-mode Dicke state exhibiting an improved number squeezing of 13.02±0.20 dB is observed within 766 ms, highlighting the potential of DRL for quantum dynamics control and quantum state preparation in interacting MB systems.
Collapse
Affiliation(s)
- Shuai-Feng Guo
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Feng Chen
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qi Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Ming Xue
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Jun-Jie Chen
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Jia-Hao Cao
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Tian-Wei Mao
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Meng Khoon Tey
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing, China
| | - Li You
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing, China
| |
Collapse
|