1
|
Yue WC, Yuan Z, Huang P, Sun Y, Gao T, Lyu YY, Tu X, Dong S, He L, Dong Y, Cao X, Kang L, Wang H, Wu P, Nisoli C, Wang YL. Toroidic phase transitions in a direct-kagome artificial spin ice. NATURE NANOTECHNOLOGY 2024; 19:1101-1107. [PMID: 38684808 DOI: 10.1038/s41565-024-01666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Ferrotoroidicity-the fourth form of primary ferroic order-breaks both space and time-inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent level and at different effective temperatures. We design a nanomagnet array as to realize a direct-kagome spin ice. This artificial spin ice exhibits robust toroidal moments and a quasi-degenerate ground state with two distinct low-temperature toroidal phases: ferrotoroidicity and paratoroidicity. Using magnetic force microscopy and Monte Carlo simulation, we demonstrate a phase transition between ferrotoroidicity and paratoroidicity, along with a cross-over to a non-toroidal paramagnetic phase. Our quasi-degenerate artificial spin ice in a direct-kagome structure provides a model system for the investigation of magnetic states and phase transitions that are inaccessible in natural materials.
Collapse
Affiliation(s)
- Wen-Cheng Yue
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Zixiong Yuan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Peiyuan Huang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Yizhe Sun
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Tan Gao
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Yang-Yang Lyu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Xuecou Tu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Sining Dong
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China.
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China.
| | - Liang He
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Ying Dong
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, China
| | - Xun Cao
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Lin Kang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Huabing Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Purple Mountain Laboratories, Nanjing, China.
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China.
| | - Peiheng Wu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Yong-Lei Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Purple Mountain Laboratories, Nanjing, China.
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China.
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China.
| |
Collapse
|
2
|
Yue WC, Yuan Z, Lyu YY, Dong S, Zhou J, Xiao ZL, He L, Tu X, Dong Y, Wang H, Xu W, Kang L, Wu P, Nisoli C, Kwok WK, Wang YL. Crystallizing Kagome Artificial Spin Ice. PHYSICAL REVIEW LETTERS 2022; 129:057202. [PMID: 35960577 DOI: 10.1103/physrevlett.129.057202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Artificial spin ices are engineered arrays of dipolarly coupled nanobar magnets. They enable direct investigations of fascinating collective phenomena from their diverse microstates. However, experimental access to ground states in the geometrically frustrated systems has proven difficult, limiting studies and applications of novel properties and functionalities from the low energy states. Here, we introduce a convenient approach to control the competing diploar interactions between the neighboring nanomagnets, allowing us to tailor the vertex degeneracy of the ground states. We achieve this by tuning the length of selected nanobar magnets in the spin ice lattice. We demonstrate the effectiveness of our method by realizing multiple low energy microstates in a kagome artificial spin ice, particularly the hardly accessible long range ordered ground state-the spin crystal state. Our strategy can be directly applied to other artificial spin systems to achieve exotic phases and explore new emergent collective behaviors.
Collapse
Affiliation(s)
- Wen-Cheng Yue
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zixiong Yuan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yang-Yang Lyu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Sining Dong
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Zhou
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zhi-Li Xiao
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - Liang He
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Ying Dong
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Huabing Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Weiwei Xu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Wai-Kwong Kwok
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yong-Lei Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Purple Mountain Laboratories, Nanjing 211111, China
| |
Collapse
|
3
|
Puttock R, Andersen IM, Gatel C, Park B, Rosamond MC, Snoeck E, Kazakova O. Defect-induced monopole injection and manipulation in artificial spin ice. Nat Commun 2022; 13:3641. [PMID: 35752624 PMCID: PMC9233697 DOI: 10.1038/s41467-022-31309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Lithographically defined arrays of nanomagnets are well placed for application in areas such as probabilistic computing or reconfigurable magnonics due to their emergent collective dynamics and writable magnetic order. Among them are artificial spin ice (ASI), which are arrays of binary in-plane macrospins exhibiting geometric frustration at the vertex interfaces. Macrospin flips in the arrays create topologically protected magnetic charges, or emergent monopoles, which are bound to an antimonopole to conserve charge. In the absence of controllable pinning, it is difficult to manipulate individual monopoles in the array without also influencing other monopole excitations or the counter-monopole charge. Here, we tailor the local magnetic order of a classic ASI lattice by introducing a ferromagnetic defect with shape anisotropy into the array. This creates monopole injection sites at nucleation fields below the critical lattice switching field. Once formed, the high energy monopoles are fixed to the defect site and may controllably propagate through the lattice under stimulation. Defect programing of bound monopoles within the array allows fine control of the pathways of inverted macrospins. Such control is a necessary prerequisite for the realization of functional devices, e. g. reconfigurable waveguide in nanomagnonic applications. Artificial spin ice systems offer a promising platform to study the motion of emergent magnetic monopoles, but controlled nucleation of monopoles is challenging. Here the authors demonstrate controlled injection and propagation of emergent monopoles in an artificial spin ice utilizing ferromagnetic defects.
Collapse
Affiliation(s)
- Robert Puttock
- Quantum Materials and Sensors, National Physical Laboratory, Teddington, UK.
| | - Ingrid M Andersen
- Centre d'Elaboration de Materiaux et d'Etudes Structurales, Toulouse, France
| | - Christophe Gatel
- Centre d'Elaboration de Materiaux et d'Etudes Structurales, Toulouse, France
| | - Bumsu Park
- Centre d'Elaboration de Materiaux et d'Etudes Structurales, Toulouse, France
| | - Mark C Rosamond
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Etienne Snoeck
- Centre d'Elaboration de Materiaux et d'Etudes Structurales, Toulouse, France
| | - Olga Kazakova
- Quantum Materials and Sensors, National Physical Laboratory, Teddington, UK
| |
Collapse
|
4
|
Paterson GW, Macauley GM, Macêdo R. Field‐Driven Reversal Models in Artificial Spin Ice. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gary W. Paterson
- SUPA, School of Physics and Astronomy University of Glasgow Glasgow G12 8QQ UK
- James Watt School of Engineering Electronics and Nanoscale Engineering Division University of Glasgow Glasgow G12 8QQ UK
| | - Gavin M. Macauley
- SUPA, School of Physics and Astronomy University of Glasgow Glasgow G12 8QQ UK
| | - Rair Macêdo
- James Watt School of Engineering Electronics and Nanoscale Engineering Division University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
5
|
Farhan A, Saccone M, Petersen CF, Dhuey S, Hofhuis K, Mansell R, Chopdekar RV, Scholl A, Lippert T, van Dijken S. Geometrical Frustration and Planar Triangular Antiferromagnetism in Quasi-Three-Dimensional Artificial Spin Architecture. PHYSICAL REVIEW LETTERS 2020; 125:267203. [PMID: 33449705 DOI: 10.1103/physrevlett.125.267203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
We present a realization of highly frustrated planar triangular antiferromagnetism achieved in a quasi-three-dimensional artificial spin system consisting of monodomain Ising-type nanomagnets lithographically arranged onto a deep-etched silicon substrate. We demonstrate how the three-dimensional spin architecture results in the first direct observation of long-range ordered planar triangular antiferromagnetism, in addition to a highly disordered phase with short-range correlations, once competing interactions are perfectly tuned. Our work demonstrates how escaping two-dimensional restrictions can lead to new types of magnetically frustrated metamaterials.
Collapse
Affiliation(s)
- Alan Farhan
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Michael Saccone
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Physics Department, University of California, 1156 High Street, Santa Cruz, California 95064, USA
| | - Charlotte F Petersen
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Scott Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Kevin Hofhuis
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Rhodri Mansell
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Thomas Lippert
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Sebastiaan van Dijken
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|