1
|
Dickerson CE, Chang C, Guo H, Alexandrova AN. Fully Saturated Hydrocarbons as Hosts of Optical Cycling Centers. J Phys Chem A 2022; 126:9644-9650. [PMID: 36519723 DOI: 10.1021/acs.jpca.2c06647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Designing closed, laser-induced optical cycling transitions in trapped atoms or molecules is useful for quantum information processing, precision measurement, and quantum sensing. Larger molecules that feature such closed transitions are particularly desirable, as the increased degrees of freedom present new structures for optical control and enhanced measurements. The search for molecules with robust optical cycling centers is a challenge which requires design principles beyond trial-and-error. Two such principles are proposed for the particular M-O-R framework, where M is an alkaline earth metal radical, and R is a ligand: (1) Large, saturated hydrocarbons can serve as ligands, R, due to a substantial HOMO-LUMO gap that encloses the cycling transition, so long as the R group is rigid. (2) Electron-withdrawing groups, via induction, can enhance Franck-Condon factors (FCFs) of the optical cycling transition, as long as they do not disturb the locally linear structure in the M-O-R motif. With these tools in mind, larger molecules can be trapped and used as optical cycling centers, sometimes with higher FCFs than smaller molecules.
Collapse
Affiliation(s)
- Claire E Dickerson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Cecilia Chang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Han Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Wójcik P, Hudson ER, Krylov AI. On the prospects of optical cycling in diatomic cations: effects of transition metals, spin–orbit couplings, and multiple bonds. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Paweł Wójcik
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Eric R. Hudson
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Center for Quantum Science and Engineering, Los Angeles, CA, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Zheng X, Zhang C, Liu J, Cheng L. Geometry Optimizations with Spinor-Based Relativistic Coupled-Cluster Theory. J Chem Phys 2022; 156:151101. [DOI: 10.1063/5.0086281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Development of analytic gradients for relativistic coupled-cluster singles and doubles augmented with a non-iterative triples [CCSD(T)] method using an all-electron exact two-component Hamiltonian with atomic mean-field spin-orbit integrals (X2CAMF) is reported. This enables efficient CC geometry optimizations with spin-orbit coupling included in orbitals. The applicability of the implementation is demonstrated using benchmark X2CAMF-CCSD(T) calculations of equilibrium structures and harmonic vibrational frequencies for methyl halides, CH3X, X=Br, I, At, as well as calculations of rotational constants and infrared spectrum for RaSH+, a radioactive molecular ion of interest to spectroscopic study.
Collapse
Affiliation(s)
- Xuechen Zheng
- Johns Hopkins University Department of Chemistry, United States of America
| | - Chaoqun Zhang
- Johns Hopkins University Department of Chemistry, United States of America
| | - Junzi Liu
- Chemistry, Johns Hopkins University Department of Chemistry, United States of America
| | - Lan Cheng
- Chemistry, Johns Hopkins University Department of Chemistry, United States of America
| |
Collapse
|
4
|
Antonov IO, Stollenwerk PR, Venkataramanababu S, de Lima Batista AP, de Oliveira-Filho AGS, Odom BC. Precisely spun super rotors. Nat Commun 2021; 12:2201. [PMID: 33850116 PMCID: PMC8044131 DOI: 10.1038/s41467-021-22342-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Abstract
Improved optical control of molecular quantum states promises new applications including chemistry in the quantum regime, precision tests of fundamental physics, and quantum information processing. While much work has sought to prepare ground state molecules, excited states are also of interest. Here, we demonstrate a broadband optical approach to pump trapped SiO+ molecules into pure super rotor ensembles maintained for many minutes. Super rotor ensembles pumped up to rotational state N = 67, corresponding to the peak of a 9400 K distribution, had a narrow N spread comparable to that of a few-kelvin sample, and were used for spectroscopy of the previously unobserved C2Π state. Significant centrifugal distortion of super rotors pumped up to N = 230 allowed probing electronic structure of SiO+ stretched far from its equilibrium bond length. Optical pulses can be useful to create and control molecules in higher quantum states. Here the authors use optical pumping to create rotationally excited states of SiO+ molecular ion into super rotor ensemble.
Collapse
Affiliation(s)
- Ivan O Antonov
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA
| | | | | | - Ana P de Lima Batista
- Departamento de Química, Laboratório Computacional de Espectroscopia e Cinética, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Antonio G S de Oliveira-Filho
- Departamento de Química, Laboratório Computacional de Espectroscopia e Cinética, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Brian C Odom
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA. .,Applied Physics program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
5
|
Dickerson CE, Guo H, Shin AJ, Augenbraun BL, Caram JR, Campbell WC, Alexandrova AN. Franck-Condon Tuning of Optical Cycling Centers by Organic Functionalization. PHYSICAL REVIEW LETTERS 2021; 126:123002. [PMID: 33834801 DOI: 10.1103/physrevlett.126.123002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Laser induced electronic excitations that spontaneously emit photons and decay directly to the initial ground state ("optical cycling transitions") are used in quantum information and precision measurement for state initialization and readout. To extend this primarily atomic technique to large, organic compounds, we theoretically investigate optical cycling of alkaline earth phenoxides and their functionalized derivatives. We find that optical cycle leakage due to wave function mismatch is low in these species, and can be further suppressed by using chemical substitution to boost the electron-withdrawing strength of the aromatic molecular ligand through resonance and induction effects. This provides a straightforward way to use chemical functional groups to construct optical cycling moieties for laser cooling, state preparation, and quantum measurement.
Collapse
Affiliation(s)
- Claire E Dickerson
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Han Guo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Ashley J Shin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Wesley C Campbell
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Mills M, Wu H, Reed EC, Qi L, Brown KR, Schneider C, Heaven MC, Campbell WC, Hudson ER. Dipole-phonon quantum logic with alkaline-earth monoxide and monosulfide cations. Phys Chem Chem Phys 2020; 22:24964-24973. [PMID: 33140766 DOI: 10.1039/d0cp04574h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dipole-phonon quantum logic (DPQL) leverages the interaction between polar molecular ions and the motional modes of a trapped-ion Coulomb crystal to provide a potentially scalable route to quantum information science. Here, we study a class of candidate molecular ions for DPQL, the cationic alkaline-earth monoxides and monosulfides, which possess suitable structure for DPQL and can be produced in existing atomic ion experiments with little additional complexity. We present calculations of DPQL operations for one of these molecules, CaO+, and discuss progress towards experimental realization. We also further develop the theory of DPQL to include state preparation and measurement and entanglement of multiple molecular ions.
Collapse
Affiliation(s)
- Michael Mills
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA.
| | - Hao Wu
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA.
| | - Evan C Reed
- Departments of Electrical and Computer Engineering, Chemistry, and Physics, Duke University, Durham, North Carolina 27708, USA
| | - Lu Qi
- Departments of Electrical and Computer Engineering, Chemistry, and Physics, Duke University, Durham, North Carolina 27708, USA
| | - Kenneth R Brown
- Departments of Electrical and Computer Engineering, Chemistry, and Physics, Duke University, Durham, North Carolina 27708, USA
| | - Christian Schneider
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA.
| | - Michael C Heaven
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Wesley C Campbell
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA. and Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, USA
| | - Eric R Hudson
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA. and Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Quantum entanglement between an atom and a molecule. Nature 2020; 581:273-277. [DOI: 10.1038/s41586-020-2257-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 02/03/2023]
|