1
|
Gong J, Wang Y, Han Y, Cheng Z, Wang X, Yu ZM, Yao Y. Hidden Real Topology and Unusual Magnetoelectric Responses in Two-Dimensional Antiferromagnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402232. [PMID: 38684179 DOI: 10.1002/adma.202402232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Recently, the real topology has been attracting widespread interest in two dimensions (2D). Here, based on first-principles calculations and theoretical analysis, the monolayer Cr2Se2O (ML-CrSeO) is revealed as the first material example of a 2D antiferromagnetic (AFM) real Chern insulator (RCI) with topologically protected corner states. Unlike previous RCIs, it is found that the real topology of the ML-CrSeO is rooted in one certain mirror subsystem of the two spin channels, and cannot be directly obtained from all the valence bands in each spin channel as commonly believed. In particular, due to antiferromagnetism, the corner modes in ML-CrSeO exhibit strong corner-contrasted spin polarization, leading to spin-corner coupling (SCC). This SCC enables a direct connection between spin space and real space. Consequently, large and switchable net magnetization can be induced in the ML-CrSeO nanodisk by electrostatic means, such as potential step and in-plane electric field, and the corresponding magnetoelectric responses behave like a sign function, distinguished from that of the conventional multiferroic materials. This work considerably broadens the candidate range of RCI materials, and opens up a new direction for topo-spintronics and 2D AFM materials research.
Collapse
Affiliation(s)
- Jialin Gong
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yang Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yilin Han
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, 2500, Australia
| | - Xiaotian Wang
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, 2500, Australia
| | - Zhi-Ming Yu
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yugui Yao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Qiu H, Li Y, Zhang Q, Qiu C. Discovery of Higher-Order Nodal Surface Semimetals. PHYSICAL REVIEW LETTERS 2024; 132:186601. [PMID: 38759197 DOI: 10.1103/physrevlett.132.186601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/29/2024] [Indexed: 05/19/2024]
Abstract
The emergent higher-order topological insulators significantly deepen our understanding of topological physics. Recently, the study has been extended to topological semimetals featuring gapless bulk band nodes. To date, higher-order nodal point and line semimetals have been successfully realized in different physical platforms. However, for the conceptually expected higher-order nodal surface semimetals, a concrete model has yet to be proposed, let alone experimentally observed. Here, we report an ingenious design route for constructing this unprecedented higher-order topological phase. The three-dimensional model, layer-stacked with a two-dimensional anisotropic Su-Schrieffer-Heeger lattice, exhibits appealing hinge arcs connecting the projected nodal surfaces. Experimentally, we realize this new topological phase in an acoustic metamaterial, and present unambiguous evidence for both the bulk nodal structure and hinge arc states, the two key manifestations of the higher-order nodal surface semimetal. Our findings can be extended to other classical systems such as photonic, elastic, and electric circuit systems, and open new possibilities for controlling waves.
Collapse
Affiliation(s)
- Huahui Qiu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yuzeng Li
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qicheng Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chunyin Qiu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Yang YB, Wang JH, Li K, Xu Y. Higher-order topological phases in crystalline and non-crystalline systems: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:283002. [PMID: 38574683 DOI: 10.1088/1361-648x/ad3abd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
In recent years, higher-order topological phases have attracted great interest in various fields of physics. These phases have protected boundary states at lower-dimensional boundaries than the conventional first-order topological phases due to the higher-order bulk-boundary correspondence. In this review, we summarize current research progress on higher-order topological phases in both crystalline and non-crystalline systems. We firstly introduce prototypical models of higher-order topological phases in crystals and their topological characterizations. We then discuss effects of quenched disorder on higher-order topology and demonstrate disorder-induced higher-order topological insulators. We also review the theoretical studies on higher-order topological insulators in amorphous systems without any crystalline symmetry and higher-order topological phases in non-periodic lattices including quasicrystals, hyperbolic lattices, and fractals, which have no crystalline counterparts. We conclude the review by a summary of experimental realizations of higher-order topological phases and discussions on potential directions for future study.
Collapse
Affiliation(s)
- Yan-Bin Yang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China, People's Republic of China
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiong-Hao Wang
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kai Li
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yong Xu
- Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| |
Collapse
|
4
|
Hu S, Guo Z, Liu W, Chen S, Chen H. Hyperbolic metamaterial empowered controllable photonic Weyl nodal line semimetals. Nat Commun 2024; 15:2773. [PMID: 38555373 PMCID: PMC10981722 DOI: 10.1038/s41467-024-47125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
Motivated by unique topological semimetals in condensed matter physics, we propose an effective Hamiltonian with four degrees of freedom to describe evolutions of photonic double Weyl nodal line semimetals in one-dimensional hyper-crystals, which supports the energy bands translating or rotating independently in the form of Weyl quasiparticles. Especially, owing to the unit cells without inversion symmetry, a pair of reflection-phase singularities carrying opposite topological charges emerge near each nodal line, and result in a unique bilateral drumhead surface state. After reducing radiation leakages and absorption losses, these two singularities gather together gradually, and form a quasi-bound state in the continuum (quasi-BIC) ring at the nodal line ultimately. Our work not only reports the first realization of controllable photonics Weyl nodal line semimetals, establishes a bridge between two independent topological concepts-BICs and Weyl semimetals, but also heralds new possibilities for unconventional device applications, such as dual-mode schemes for highly sensitive sensing and switching.
Collapse
Affiliation(s)
- Shengyu Hu
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Zhiwei Guo
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Wenwei Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, 300071, Tianjin, China
- Renewable Energy Conversion and Storage Center, Nankai University, 300071, Tianjin, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, 300071, Tianjin, China
| | - Shuqi Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, 300071, Tianjin, China
- Renewable Energy Conversion and Storage Center, Nankai University, 300071, Tianjin, China
- Smart Sensing Interdisciplinary Science Center, Nankai University, 300071, Tianjin, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China
| | - Hong Chen
- MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, 200092, Shanghai, China
| |
Collapse
|
5
|
Ma Q, Pu Z, Ye L, Lu J, Huang X, Ke M, He H, Deng W, Liu Z. Observation of Higher-Order Nodal-Line Semimetal in Phononic Crystals. PHYSICAL REVIEW LETTERS 2024; 132:066601. [PMID: 38394560 DOI: 10.1103/physrevlett.132.066601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Higher-order topological insulators and semimetals, which generalize the conventional bulk-boundary correspondence, have attracted extensive research interest. Among them, higher-order Weyl semimetals feature twofold linear crossing points in three-dimensional momentum space, 2D Fermi-arc surface states, and 1D hinge states. Higher-order nodal-point semimetals possessing Weyl points or Dirac points have been implemented. However, higher-order nodal-line or nodal-surface semimetals remain to be further explored in experiments in spite of many previous theoretical efforts. In this work, we realize a second-order nodal-line semimetal in 3D phononic crystals. The bulk nodal lines, 2D drumhead surface states guaranteed by Zak phases, and 1D flat hinge states attributed to k_{z}-dependent quadrupole moments are observed in simulations and experiments. Our findings of nondispersive surface and hinge states may promote applications in acoustic sensing and energy harvesting.
Collapse
Affiliation(s)
- Qiyun Ma
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhenhang Pu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Liping Ye
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jiuyang Lu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xueqin Huang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Manzhu Ke
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hailong He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Weiyin Deng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhengyou Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Zhang X, He T, Liu Y, Dai X, Liu G, Chen C, Wu W, Zhu J, Yang SA. Magnetic Real Chern Insulator in 2D Metal-Organic Frameworks. NANO LETTERS 2023; 23:7358-7363. [PMID: 37535707 DOI: 10.1021/acs.nanolett.3c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Real Chern insulators have attracted great interest, but so far, their material realization is limited to nonmagnetic crystals and systems without spin-orbit coupling. Here, we reveal the magnetic real Chern insulator (MRCI) state in a recently synthesized metal-organic framework material Co3(HITP)2. Its ground state with in-plane ferromagnetic ordering hosts a nontrivial real Chern number, enabled by the C2zT symmetry and robustness against spin-orbit coupling. Distinct from previous nonmagnetic examples, the topological corner zero modes of MRCIs are spin-polarized. Furthermore, under small tensile strains, the material undergoes a topological phase transition from the MRCI to a magnetic double-Weyl semimetal phase, via a pseudospin-1 critical state. Similar physics can also be found in closely related materials Mn3(HITP)2 and Fe3(HITP)2, which also exist. Possible experimental detections and implications of an emerging magnetic flat band in the system are discussed.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Tingli He
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ying Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xuefang Dai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Guodong Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Cong Chen
- Department of Physics, The University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Weikang Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Jiaojiao Zhu
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
7
|
Xue H, Chen ZY, Cheng Z, Dai JX, Long Y, Zhao YX, Zhang B. Stiefel-Whitney topological charges in a three-dimensional acoustic nodal-line crystal. Nat Commun 2023; 14:4563. [PMID: 37507388 PMCID: PMC10382567 DOI: 10.1038/s41467-023-40252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Band topology of materials describes the extent Bloch wavefunctions are twisted in momentum space. Such descriptions rely on a set of topological invariants, generally referred to as topological charges, which form a characteristic class in the mathematical structure of fiber bundles associated with the Bloch wavefunctions. For example, the celebrated Chern number and its variants belong to the Chern class, characterizing topological charges for complex Bloch wavefunctions. Nevertheless, under the space-time inversion symmetry, Bloch wavefunctions can be purely real in the entire momentum space; consequently, their topological classification does not fall into the Chern class, but requires another characteristic class known as the Stiefel-Whitney class. Here, in a three-dimensional acoustic crystal, we demonstrate a topological nodal-line semimetal that is characterized by a doublet of topological charges, the first and second Stiefel-Whitney numbers, simultaneously. Such a doubly charged nodal line gives rise to a doubled bulk-boundary correspondence-while the first Stiefel-Whitney number induces ordinary drumhead states of the nodal line, the second Stiefel-Whitney number supports hinge Fermi arc states at odd inversion-related pairs of hinges. These results experimentally validate the two Stiefel-Whitney topological charges and demonstrate their unique bulk-boundary correspondence in a physical system.
Collapse
Affiliation(s)
- Haoran Xue
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Z Y Chen
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Zheyu Cheng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - J X Dai
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Yang Long
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Y X Zhao
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China.
- HK Institute of Quantum Science & Technology, The University of Hong Kong, Hong Kong, China.
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
8
|
Peng B, Bouhon A, Monserrat B, Slager RJ. Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates. Nat Commun 2022; 13:423. [PMID: 35058473 PMCID: PMC8776786 DOI: 10.1038/s41467-022-28046-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/29/2021] [Indexed: 11/08/2022] Open
Abstract
Topological phases of matter have revolutionised the fundamental understanding of band theory and hold great promise for next-generation technologies such as low-power electronics or quantum computers. Single-gap topologies have been extensively explored, and a large number of materials have been theoretically proposed and experimentally observed. These ideas have recently been extended to multi-gap topologies with band nodes that carry non-Abelian charges, characterised by invariants that arise by the momentum space braiding of such nodes. However, the constraints placed by the Fermi-Dirac distribution to electronic systems have so far prevented the experimental observation of multi-gap topologies in real materials. Here, we show that multi-gap topologies and the accompanying phase transitions driven by braiding processes can be readily observed in the bosonic phonon spectra of known monolayer silicates. The associated braiding process can be controlled by means of an electric field and epitaxial strain, and involves, for the first time, more than three bands. Finally, we propose that the band inversion processes at the Γ point can be tracked by following the evolution of the Raman spectrum, providing a clear signature for the experimental verification of the band inversion accompanied by the braiding process.
Collapse
Affiliation(s)
- Bo Peng
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom.
| | - Adrien Bouhon
- Nordic Institute for Theoretical Physics (Nordita), Stockholm University and KTH Royal Institute of Technology, Hannes Alfvéns väg 12, Stockholm, SE-106 91, Sweden.
| | - Bartomeu Monserrat
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom.
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom.
| | - Robert-Jan Slager
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom.
| |
Collapse
|
9
|
Chen C, Zeng XT, Chen Z, Zhao YX, Sheng XL, Yang SA. Second-Order Real Nodal-Line Semimetal in Three-Dimensional Graphdiyne. PHYSICAL REVIEW LETTERS 2022; 128:026405. [PMID: 35089745 DOI: 10.1103/physrevlett.128.026405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Real topological phases featuring real Chern numbers and second-order boundary modes have been a focus of current research, but finding their material realization remains a challenge. Here, based on first-principles calculations and theoretical analysis, we reveal the already experimentally synthesized three-dimensional (3D) graphdiyne as the first realistic example of the recently proposed second-order real nodal-line semimetal. We show that the material hosts a pair of real nodal rings, each protected by two topological charges: a real Chern number and a 1D winding number. The two charges generate distinct topological boundary modes at distinct boundaries. The real Chern number leads to a pair of hinge Fermi arcs, whereas the winding number protects a double drumhead surface bands. We develop a low-energy model for 3D graphdiyne which captures the essential topological physics. Experimental aspects and possible topological transition to a 3D real Chern insulator phase are discussed.
Collapse
Affiliation(s)
- Cong Chen
- School of Physics, Beihang University, Beijing 100191, China
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Xu-Tao Zeng
- School of Physics, Beihang University, Beijing 100191, China
| | - Ziyu Chen
- School of Physics, Beihang University, Beijing 100191, China
| | - Y X Zhao
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xian-Lei Sheng
- School of Physics, Beihang University, Beijing 100191, China
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
10
|
Liu T, He JJ, Yang Z, Nori F. Higher-Order Weyl-Exceptional-Ring Semimetals. PHYSICAL REVIEW LETTERS 2021; 127:196801. [PMID: 34797150 DOI: 10.1103/physrevlett.127.196801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimetals, as a novel class of higher-order topological phases, can uniquely exhibit coexisting surface and hinge Fermi arcs. However, non-Hermitian higher-order topological semimetals have not yet been explored. Here, we identify a new type of topological semimetal, i.e., a higher-order topological semimetal with Weyl exceptional rings. In such a semimetal, these rings are characterized by both a spectral winding number and a Chern number. Moreover, the higher-order Weyl-exceptional-ring semimetal supports both surface and hinge Fermi-arc states, which are bounded by the projection of the Weyl exceptional rings onto the surface and hinge, respectively. Noticeably, the dissipative terms can cause the coupling of two exceptional rings with opposite topological charges, so as to induce topological phase transitions. Our studies open new avenues for exploring novel higher-order topological semimetals in non-Hermitian systems.
Collapse
Affiliation(s)
- Tao Liu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - James Jun He
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
- South China Normal University, Guangzhou 510006, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
11
|
Shao LB, Liu Q, Xiao R, Yang SA, Zhao YX. Gauge-Field Extended k·p Method and Novel Topological Phases. PHYSICAL REVIEW LETTERS 2021; 127:076401. [PMID: 34459642 DOI: 10.1103/physrevlett.127.076401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z_{2} gauge fields. Hence, it is fundamentally important to explore new topological phases based on these features. Here, we point out that the Z_{2} gauge field leads to two fundamental modifications of the conventional k·p method: (i) The little co-group must include the translations with nontrivial algebraic relations. (ii) The algebraic relations of the little co-group are projectively represented. These give rise to higher-dimensional irreducible representations and therefore highly degenerate Fermi points. Breaking the primitive translations can transform the Fermi points to interesting topological phases. We demonstrate our theory by two models: a rectangular π-flux model exhibiting graphenelike semimetal phases, and a graphite model with interlayer π flux that realizes the real second-order nodal-line semimetal phase with hinge helical modes. Their physical realizations with a general bright-dark mechanism are discussed. Our finding opens a new direction to explore novel topological phases unique to crystalline systems with gauge fields and establishes the approach to analyze these phases.
Collapse
Affiliation(s)
- L B Shao
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Q Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - R Xiao
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Y X Zhao
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Chen R, Liu T, Wang CM, Lu HZ, Xie XC. Field-Tunable One-Sided Higher-Order Topological Hinge States in Dirac Semimetals. PHYSICAL REVIEW LETTERS 2021; 127:066801. [PMID: 34420339 DOI: 10.1103/physrevlett.127.066801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Recently, higher-order topological matter and 3D quantum Hall effects have attracted a great amount of attention. The Fermi-arc mechanism of the 3D quantum Hall effect proposed to exist in Weyl semimetals is characterized by the one-sided hinge states, which do not exist in all the previous quantum Hall systems, and more importantly, pose a realistic example of the higher-order topological matter. The experimental effort so far is in the Dirac semimetal Cd_{3}As_{2}, where, however, time-reversal symmetry leads to hinge states on both sides of the top and bottom surfaces, instead of the aspired one-sided hinge states. We propose that under a tilted magnetic field, the hinge states in Cd_{3}As_{2}-like Dirac semimetals can be one sided, highly tunable by field direction and Fermi energy, and robust against weak disorder. Furthermore, we propose a scanning tunneling Hall measurement to detect the one-sided hinge states. Our results will be insightful for exploring not only the quantum Hall effects beyond two dimensions, but also other higher-order topological insulators in the future.
Collapse
Affiliation(s)
- Rui Chen
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- School of Physics, Southeast University, Nanjing 211189, China
| | - Tianyu Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
| | - C M Wang
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
- Department of Physics, Shanghai Normal University, Shanghai 200234, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Palumbo G. Non-Abelian Tensor Berry Connections in Multiband Topological Systems. PHYSICAL REVIEW LETTERS 2021; 126:246801. [PMID: 34213935 DOI: 10.1103/physrevlett.126.246801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Here, we introduce and apply non-Abelian tensor Berry connections to topological phases in multiband systems. These gauge connections behave as non-Abelian antisymmetric tensor gauge fields in momentum space and naturally generalize Abelian tensor Berry connections and ordinary non-Abelian (vector) Berry connections. We build these novel gauge fields from momentum-space Higgs fields, which emerge from the degenerate band structure of multiband models. First, we show that the conventional topological invariants of two-dimensional topological insulators and three-dimensional Dirac semimetals can be derived from the winding number associated with the Higgs field. Second, through the non-Abelian tensor Berry connections we construct higher-dimensional Berry-Zak phases and show their role in the topological characterization of several gapped and gapless systems, ranging from two-dimensional Euler insulators to four-dimensional Dirac semimetals. Importantly, through our new theoretical formalism, we identify and characterize a novel class of models that support space-time inversion and chiral symmetries. Our work provides a unifying framework for different multiband topological systems and sheds new light on the emergence of non-Abelian gauge fields in condensed matter physics, with direct implications on the search for novel topological phases in solid-state and synthetic systems.
Collapse
Affiliation(s)
- Giandomenico Palumbo
- School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
| |
Collapse
|
14
|
Zhao YX, Chen C, Sheng XL, Yang SA. Switching Spinless and Spinful Topological Phases with Projective PT Symmetry. PHYSICAL REVIEW LETTERS 2021; 126:196402. [PMID: 34047612 DOI: 10.1103/physrevlett.126.196402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
A fundamental dichotomous classification for all physical systems is according to whether they are spinless or spinful. This is especially crucial for the study of symmetry-protected topological phases, as the two classes have distinct symmetry algebra. As a prominent example, the spacetime inversion symmetry PT satisfies (PT)^{2}=±1 for spinless/spinful systems, and each class features unique topological phases. Here, we reveal a possibility to switch the two fundamental classes via Z_{2} projective representations. For PT symmetry, this occurs when P inverses the gauge transformation needed to recover the original Z_{2} gauge connections under P. As a result, we can achieve topological phases originally unique for spinful systems in a spinless system, and vice versa. We explicitly demonstrate the claimed mechanism with several concrete models, such as Kramers degenerate bands and Kramers Majorana boundary modes in spinless systems, and real topological phases in spinful systems. Possible experimental realization of these models is discussed. Our work breaks a fundamental limitation on topological phases and opens an unprecedented possibility to realize intriguing topological phases in previously impossible systems.
Collapse
Affiliation(s)
- Y X Zhao
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Cong Chen
- School of Physics, and Key Laboratory of Micro-nano Measurement-Manipulation and Physics, Beihang University, Beijing 100191, China
| | - Xian-Lei Sheng
- School of Physics, and Key Laboratory of Micro-nano Measurement-Manipulation and Physics, Beihang University, Beijing 100191, China
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|