1
|
Manna S, Das A, Goldstein M, Gefen Y. Full Classification of Transport on an Equilibrated 5/2 Edge via Shot Noise. PHYSICAL REVIEW LETTERS 2024; 132:136502. [PMID: 38613281 DOI: 10.1103/physrevlett.132.136502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 04/14/2024]
Abstract
The nature of the bulk topological order of the 5/2 non-Abelian fractional quantum Hall state and the steady state of its edge are long-studied questions. The most promising non-Abelian model bulk states are the Pfaffian (Pf), anti-Pffafian (APf), and particle-hole symmetric Pfaffian (PHPf). Here, we propose to employ a set of dc current-current correlations (electrical shot noise) in order to distinguish among the Pf, APf, and PHPf candidate states, as well as to determine their edge thermal equilibration regimes: full vs partial. Using other tools, measurements of GaAs platforms have already indicated consistency with the PHPf state. Our protocol, realizable with available experimental tools, is based on fully electrical measurements.
Collapse
Affiliation(s)
- Sourav Manna
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Ankur Das
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moshe Goldstein
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Gefen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Das S, Das S, Mandal SS. Anomalous Reentrant 5/2 Quantum Hall Phase at Moderate Landau-Level-Mixing Strength. PHYSICAL REVIEW LETTERS 2023; 131:056202. [PMID: 37595232 DOI: 10.1103/physrevlett.131.056202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 08/20/2023]
Abstract
A successful probing of the neutral Majorana mode in recent thermal Hall conductivity measurements opines in favor of the particle-hole symmetric Pfaffian (PH-Pf) topological order, contrasting the theoretical predictions of Pfaffian or anti-Pfaffian phases. Here we report a reentrant anomalous quantized phase that is found to be gapped in the thermodynamic limit, distinct from the conventional Pfaffian, anti-Pfaffian, or PH-Pf phases, at an intermediate strength of Landau level mixing. Our proposed wave function consistent with the PH-Pf shift in spherical geometry rightly captures the topological order of this phase, as its overlap with the exact ground state is very high and it reproduces low-lying entanglement spectra. A unique topological order, irrespective of the flux shifts, found for this phase, possibly corroborates the experimentally found topological order.
Collapse
Affiliation(s)
- Sudipto Das
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sahana Das
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sudhansu S Mandal
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Liu Z, Wurstbauer U, Du L, West KW, Pfeiffer LN, Manfra MJ, Pinczuk A. Domain Textures in the Fractional Quantum Hall Effect. PHYSICAL REVIEW LETTERS 2022; 128:017401. [PMID: 35061454 DOI: 10.1103/physrevlett.128.017401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Impacts of domain textures on low-lying neutral excitations in the bulk of fractional quantum Hall effect (FQHE) systems are probed by resonant inelastic light scattering. We demonstrate that large domains of quantum fluids support long-wavelength neutral collective excitations with well-defined wave vector (momentum) dispersion that could be interpreted by theories for uniform phases. Access to dispersive low-lying neutral collective modes in large domains of FQHE fluids such as long wavelength magnetorotons at filling factor v=1/3 offer significant experimental access to strong electron correlation physics in the FQHE.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Ursula Wurstbauer
- Institute of Physics, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Lingjie Du
- School of Physics, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Ken W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Loren N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Michael J Manfra
- Department of Physics and Astronomy, School of Materials Engineering, and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Microsoft Quantum Lab Purdue, Purdue University, West Lafayette, Indiana 47907, USA
| | - Aron Pinczuk
- Department of Physics, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| |
Collapse
|
4
|
Van Mechelen T, Sun W, Jacob Z. Optical N-invariant of graphene's topological viscous Hall fluid. Nat Commun 2021; 12:4729. [PMID: 34354074 PMCID: PMC8342470 DOI: 10.1038/s41467-021-25097-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Over the past three decades, graphene has become the prototypical platform for discovering topological phases of matter. Both the Chern \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C\in {\mathbb{Z}}$$\end{document}C∈Z and quantum spin Hall \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upsilon \in {{\mathbb{Z}}}_{2}$$\end{document}υ∈Z2 insulators were first predicted in graphene, which led to a veritable explosion of research in topological materials. We introduce a new topological classification of two-dimensional matter – the optical N-phases \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N\in {\mathbb{Z}}$$\end{document}N∈Z. This topological quantum number is connected to polarization transport and captured solely by the spatiotemporal dispersion of the susceptibility tensor χ. We verify N ≠ 0 in graphene with the underlying physical mechanism being repulsive Hall viscosity. An experimental probe, evanescent magneto-optic Kerr effect (e-MOKE) spectroscopy, is proposed to explore the N-invariant. We also develop topological circulators by exploiting gapless edge plasmons that are immune to back-scattering and navigate sharp defects with impunity. Our work indicates that graphene with repulsive Hall viscosity is the first candidate material for a topological electromagnetic phase of matter. Graphene is the archetype for realizing two-dimensional topological phases of matter. Here, the authors introduce a new topological classification connected to polarization transport, where the topological number is revealed in the spatiotemporal dispersion of the susceptibility tensor.
Collapse
Affiliation(s)
- Todd Van Mechelen
- School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Wenbo Sun
- School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Zubin Jacob
- School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Feldman DE, Halperin BI. Fractional charge and fractional statistics in the quantum Hall effects. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076501. [PMID: 34015771 DOI: 10.1088/1361-6633/ac03aa] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Quasiparticles with fractional charge and fractional statistics are key features of the fractional quantum Hall effect. We discuss in detail the definitions of fractional charge and statistics and the ways in which these properties may be observed. In addition to theoretical foundations, we review the present status of the experiments in the area. We also discuss the notions of non-Abelian statistics and attempts to find experimental evidence for the existence of non-Abelian quasiparticles in certain quantum Hall systems.
Collapse
Affiliation(s)
- D E Feldman
- Brown Theoretical Physics Center and Department of Physics, Brown University, Providence, RI 02912, United States of America
| | - Bertrand I Halperin
- Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
| |
Collapse
|
6
|
Park J, Spånslätt C, Gefen Y, Mirlin AD. Noise on the non-Abelian ν=5/2 Fractional Quantum Hall Edge. PHYSICAL REVIEW LETTERS 2020; 125:157702. [PMID: 33095623 DOI: 10.1103/physrevlett.125.157702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The recent measurement of a half-integer thermal conductance for the ν=5/2 fractional quantum Hall state has confirmed its non-Abelian nature, making the question of the underlying topological order highly intriguing. We analyze the shot noise at the edge of the three most prominent non-Abelian candidate states. We show that the noise scaling with respect to the edge length can, in combination with the thermal conductance, be used to experimentally distinguish between the Pfaffian, anti-Pfaffian, and particle-hole-Pfaffian edge structures.
Collapse
Affiliation(s)
- Jinhong Park
- Institute for Theoretical Physics, University of Cologne, Zülpicher Strasse 77, 50937 Köln, Germany
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Christian Spånslätt
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Yuval Gefen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Alexander D Mirlin
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
- Petersburg Nuclear Physics Institute, 188300 St. Petersburg, Russia
- L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow, Russia
| |
Collapse
|