1
|
Fava G, Gambassi A, Ginelli F. Strong Casimir-like Forces in Flocking Active Matter. PHYSICAL REVIEW LETTERS 2024; 133:148301. [PMID: 39423381 DOI: 10.1103/physrevlett.133.148301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/20/2023] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
Confining in space the equilibrium fluctuations of statistical systems with long-range correlations is known to result into effective forces on the boundaries. Here we demonstrate the occurrence of Casimir-like forces in the nonequilibrium context provided by flocking active matter. In particular, we consider a system of aligning self-propelled particles in two spatial dimensions that are transversally confined by reflecting or partially reflecting walls. We show that in the ordered flocking phase this confined active vectorial fluid is characterized by extensive boundary layers, as opposed to the finite ones usually observed in confined scalar active matter. Moreover, a finite-size, fluctuation-induced contribution to the pressure on the wall emerges, which decays slowly and algebraically upon increasing the distance between the walls. We explain our findings-which display a certain degree of universality-within a hydrodynamic description of the density and velocity fields.
Collapse
|
2
|
Siebers F, Bebon R, Jayaram A, Speck T. Collective Hall current in chiral active fluids: Coupling of phase and mass transport through traveling bands. Proc Natl Acad Sci U S A 2024; 121:e2320256121. [PMID: 38941276 PMCID: PMC11228510 DOI: 10.1073/pnas.2320256121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/23/2024] [Indexed: 06/30/2024] Open
Abstract
Active fluids composed of constituents that are constantly driven away from thermal equilibrium can support spontaneous currents and can be engineered to have unconventional transport properties. Here, we report the emergence of (meta)stable traveling bands in computer simulations of aligning circle swimmers. These bands are different from polar flocks and, through coupling phase with mass transport, induce a bulk particle current with a component perpendicular to the propagation direction, thus giving rise to a collective Hall (or Magnus) effect. Traveling bands require sufficiently small orbits and undergo a discontinuous transition into a synchronized state with transient polar clusters for large orbital radii. Within a minimal hydrodynamic theory, we show that the bands can be understood as nondispersive soliton solutions fully accounting for the numerically observed properties.
Collapse
Affiliation(s)
- Frank Siebers
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Robin Bebon
- Institute for Theoretical Physics IV, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ashreya Jayaram
- Institute for Theoretical Physics IV, University of Stuttgart, 70569 Stuttgart, Germany
| | - Thomas Speck
- Institute for Theoretical Physics IV, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Bandyopadhyay S, Chatterjee S, Dutta AK, Karmakar M, Rieger H, Paul R. Ordering kinetics in the active Ising model. Phys Rev E 2024; 109:064143. [PMID: 39020881 DOI: 10.1103/physreve.109.064143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
We undertake a numerical study of the ordering kinetics in the two-dimensional (2D) active Ising model (AIM), a discrete flocking model with a conserved density field coupled to a nonconserved magnetization field. We find that for a quench into the liquid-gas coexistence region and in the ordered liquid region, the characteristic length scale of both the density and magnetization domains follows the Lifshitz-Cahn-Allen growth law, R(t)∼t^{1/2}, consistent with the growth law of passive systems with scalar order parameter and nonconserved dynamics. The system morphology is analyzed with the two-point correlation function and its Fourier transform, the structure factor, which conforms to the well-known Porod's law, a manifestation of the coarsening of compact domains with smooth boundaries. We also find the domain growth exponent unaffected by different noise strengths and self-propulsion velocities of the active particles. However, transverse diffusion is found to play the most significant role in the growth kinetics of the AIM. We extract the same growth exponent by solving the hydrodynamic equations of the AIM.
Collapse
|
4
|
Huang J, Shao ZG. Collective motion of chiral particles in complex noise environments. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:11. [PMID: 38319445 DOI: 10.1140/epje/s10189-023-00403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/24/2023] [Indexed: 02/07/2024]
Abstract
Collective motion of chiral particles in complex noise environments is investigated based on the Vicsek model. In the model, we added chirality, along with complex noise, affecting particles clustering motion. Particles can only avoid noise interference in a specific channel, and this consideration is more realistic due to the complexity of the environment. Via simulations, we find that the channel proportion, p, critically influences chiral particle synchronization. Specifically, we observe a disorder-order transition at critical [Formula: see text], only when [Formula: see text], the system can achieve global synchronization. Combined with our definition of spatial distribution parameter and observation of the model, the reason is that particles begin to escape from the noise region under the influence of complex noise. In addition, the value of [Formula: see text] increases linearly with velocity, while it decreases monotonically with the increase in chirality and interaction radius. Interestingly, an appropriate noise amplitude minimizes [Formula: see text]. Our findings may inspire novel strategies to manipulate self-propelled particles of distinct chirality to achieve desired spatial migration and global synchronization.
Collapse
Affiliation(s)
- Jun Huang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Zhi-Gang Shao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China.
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Karmakar M, Chatterjee S, Mangeat M, Rieger H, Paul R. Jamming and flocking in the restricted active Potts model. Phys Rev E 2023; 108:014604. [PMID: 37583144 DOI: 10.1103/physreve.108.014604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 08/17/2023]
Abstract
We study the active Potts model with either site occupancy restriction or on-site repulsion to explore jamming and kinetic arrest in a flocking model. The incorporation of such volume exclusion features leads to a surprisingly rich variety of self-organized spatial patterns. While bands and lanes of moving particles commonly occur without or under weak volume exclusion, strong volume exclusion along with low temperature, high activity, and large particle density facilitates jams due to motility-induced phase separation. Through several phase diagrams, we identify the phase boundaries separating the jammed and free-flowing phases and study the transition between these phases which provide us with both qualitative and quantitative predictions of how jamming might be delayed or dissolved. We further formulate and analyze a hydrodynamic theory for the restricted APM which predicts various features of the microscopic model.
Collapse
Affiliation(s)
- Mintu Karmakar
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Swarnajit Chatterjee
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Matthieu Mangeat
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Heiko Rieger
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
- INM-Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken, Germany
| | - Raja Paul
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
6
|
González-Albaladejo R, Carpio A, Bonilla LL. Scale-free chaos in the confined Vicsek flocking model. Phys Rev E 2023; 107:014209. [PMID: 36797962 DOI: 10.1103/physreve.107.014209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The Vicsek model encompasses the paradigm of active dry matter. Motivated by collective behavior of insects in swarms, we have studied finite-size effects and criticality in the three-dimensional, harmonically confined Vicsek model. We have discovered a phase transition that exists for appropriate noise and small confinement strength. On the critical line of confinement versus noise, swarms are in a state of scale-free chaos characterized by minimal correlation time, correlation length proportional to swarm size and topological data analysis. The critical line separates dispersed single clusters from confined multicluster swarms. Scale-free chaotic swarms occupy a compact region of space and comprise a recognizable "condensed" nucleus and particles leaving and entering it. Susceptibility, correlation length, dynamic correlation function, and largest Lyapunov exponent obey power laws. The critical line and a narrow criticality region close to it move simultaneously to zero confinement strength for infinitely many particles. At the end of the first chaotic window of confinement, there is another phase transition to infinitely dense clusters of finite size that may be termed flocking black holes.
Collapse
Affiliation(s)
- R González-Albaladejo
- Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - A Carpio
- Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - L L Bonilla
- Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| |
Collapse
|
7
|
Degond P, Manhart A, Merino-Aceituno S, Peurichard D, Sala L. How environment affects active particle swarms: a case study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220791. [PMID: 36533200 PMCID: PMC9748504 DOI: 10.1098/rsos.220791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
We investigate the collective motion of self-propelled agents in an environment filled with obstacles that are tethered to fixed positions via springs. The active particles are able to modify the environment by moving the obstacles through repulsion forces. This creates feedback interactions between the particles and the obstacles from which a breadth of patterns emerges (trails, band, clusters, honey-comb structures, etc.). We will focus on a discrete model first introduced in Aceves-Sanchez P et al. (2020, Bull. Math. Biol. 82, 125 (doi:10.1007/s11538-020-00805-z)), and derived into a continuum PDE model. As a first major novelty, we perform an in-depth investigation of pattern formation of the discrete and continuum models in two dimensions: we provide phase-diagrams and determine the key mechanisms for bifurcations to happen using linear stability analysis. As a result, we discover that the agent-agent repulsion, the agent-obstacle repulsion and the obstacle's spring stiffness are the key forces in the appearance of patterns, while alignment forces between the particles play a secondary role. The second major novelty lies in the development of an innovative methodology to compare discrete and continuum models that we apply here to perform an in-depth analysis of the agreement between the discrete and continuum models.
Collapse
Affiliation(s)
- Pierre Degond
- Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, Toulouse Cedex 9 31062, France
| | - Angelika Manhart
- Mathematics Department, University College London, 25 Gordon Street, London, UK
| | - Sara Merino-Aceituno
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria
| | - Diane Peurichard
- Inria, Laboratoire Jacques-Louis Lions, Sorbonne Université, CNRS, Université de Paris, 4, Place Jussieu, Paris Cedex 05 75252, France
| | - Lorenzo Sala
- INRIA Saclay Ile-de-France, 1 rue Honoré d’Estienne d’Orves, Palaiseau 91120, France
| |
Collapse
|
8
|
Menzel AM. Circular motion subject to external alignment under active driving: Nonlinear dynamics and the circle map. Phys Rev E 2022; 106:064603. [PMID: 36671092 DOI: 10.1103/physreve.106.064603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Hardly any real self-propelling or actively driven object is perfect. Thus, undisturbed motion will generally not follow straight lines but rather bent or circular trajectories. We here address self-propelled or actively driven objects that move in discrete steps and additionally tend to migrate towards a certain direction by discrete angular adjustment. Overreaction in the angular alignment is possible. This competition implies pronounced nonlinear dynamics including period doubling and chaotic behavior in a broad parameter regime. Such behavior directly affects the appearance of the trajectories. Furthermore, we address collective motion and effects of spatial self-concentration.
Collapse
Affiliation(s)
- Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
9
|
Le Blay M, Morin A. Repulsive torques alone trigger crystallization of constant speed active particles. SOFT MATTER 2022; 18:3120-3124. [PMID: 35388856 DOI: 10.1039/d2sm00256f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We investigate the possibility for self-propelled particles to crystallize without reducing their intrinsic speed. We illuminate how, in the absence of any force, the competition between self-propulsion and repulsive torques determines the macroscopic phases of constant-speed active particles. This minimal model expands upon existing approaches for an improved understanding of crystallization of active matter.
Collapse
Affiliation(s)
- Marine Le Blay
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands.
| | - Alexandre Morin
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
10
|
Miranda-Filho LH, Sobral TA, de Souza AJF, Elskens Y, Romaguera ARDC. Lyapunov exponent in the Vicsek model. Phys Rev E 2022; 105:014213. [PMID: 35193323 DOI: 10.1103/physreve.105.014213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The well-known Vicsek model describes the dynamics of a flock of self-propelled particles (SPPs). Surprisingly, there is no direct measure of the chaotic behavior of such systems. Here we discuss the dynamical phase transition present in Vicsek systems in light of the largest Lyapunov exponent (LLE), which is numerically computed by following the dynamical evolution in tangent space for up to two million SPPs. As discontinuities in the neighbor weighting factor hinder the computations, we propose a smooth form of the Vicsek model. We find a chaotic regime for the collective behavior of the SPPs based on the LLE. The dependence of LLE with the applied noise, used as a control parameter, changes sensibly in the vicinity of the well-known transition points of the Vicsek model.
Collapse
Affiliation(s)
- L H Miranda-Filho
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife, Brazil
| | - T A Sobral
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, RN 288, s/n, Nova Caicó, 59300-000, Caicó, Brazil
| | - A J F de Souza
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife, Brazil
| | - Y Elskens
- Aix-Marseille Université, UMR 7345 CNRS, Physique des interactions ioniques et moléculaires, campus Saint-Jérôme, case 322, av. esc. Normandie-Niemen, FR-13397 Marseille cedex 20, France, EU
| | - Antonio R de C Romaguera
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife, Brazil
| |
Collapse
|
11
|
Zhao Y, Ihle T, Han Z, Huepe C, Romanczuk P. Phases and homogeneous ordered states in alignment-based self-propelled particle models. Phys Rev E 2021; 104:044605. [PMID: 34781565 DOI: 10.1103/physreve.104.044605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/20/2021] [Indexed: 01/29/2023]
Abstract
We study a set of models of self-propelled particles that achieve collective motion through similar alignment-based dynamics, considering versions with and without repulsive interactions that do not affect the heading directions. We explore their phase space within a broad range of values of two nondimensional parameters (coupling strength and Peclet number), characterizing their polarization and degree of clustering. The resulting phase diagrams display equivalent, similarly distributed regions for all models with repulsion. The diagrams without repulsion exhibit differences, in particular for high coupling strengths. We compare the boundaries and representative states of all regions, identifying various regimes that had not been previously characterized. We analyze in detail three types of homogeneous polarized states, comparing them to existing theoretical and numerical results by computing their velocity and density correlations, giant number fluctuations, and local order-density coupling. We find that they all deviate in one way or another from the theoretical predictions, attributing these differences either to the remaining inhomogeneities or to finite-size effects. We discuss our results in terms of the generic or specific features of each model, their thermodynamic limit, and the high mixing and low mixing regimes. Our study provides a broad, overarching perspective on the multiple phases and states found in alignment-based self-propelled particle models.
Collapse
Affiliation(s)
- Yinong Zhao
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Thomas Ihle
- Institute of Physics, University of Greifswald, 17489 Greifswald, Germany
| | - Zhangang Han
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Cristián Huepe
- School of Systems Science, Beijing Normal University, Beijing 100875, China.,CHuepe Labs, Chicago, Illinois 60622, USA.,Northwestern Institute on Complex Systems and ESAM, Northwestern University, Evanston, Illinois 60208, USA
| | - Pawel Romanczuk
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| |
Collapse
|
12
|
Kürsten R, Ihle T. Quantitative kinetic theory of flocking with three-particle closure. Phys Rev E 2021; 104:034604. [PMID: 34654183 DOI: 10.1103/physreve.104.034604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022]
Abstract
We consider aligning self-propelled particles in two dimensions. Their motion is given by Langevin equations and includes nonadditive N-particle interactions. The qualitative behavior is as for the famous Vicsek model. We develop a kinetic theory of flocking beyond mean field. In particular, we self-consistently take into account the full pair correlation function. We find excellent quantitative agreement of the pair correlations with direct agent-based simulations within the disordered regime. Furthermore we use a closure relation to incorporate spatial correlations of three particles. In that way we achieve good quantitative agreement of the onset of flocking with direct simulations. Compared to mean-field theory, the flocking transition is shifted significantly toward lower noise because directional correlations favor disorder. We compare our theory with a recently developed Landau-kinetic theory.
Collapse
Affiliation(s)
- Rüdiger Kürsten
- Institut für Physik, Universität Greifswald, Felix-Hausdorff-Strasse 6, 17489 Greifswald, Germany
| | - Thomas Ihle
- Institut für Physik, Universität Greifswald, Felix-Hausdorff-Strasse 6, 17489 Greifswald, Germany
| |
Collapse
|