1
|
Zhao XH, Tu ZC, Ma YH. Engineering ratchet-based particle separation via extended shortcuts to isothermality. Phys Rev E 2024; 110:034105. [PMID: 39425423 DOI: 10.1103/physreve.110.034105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/09/2024] [Indexed: 10/21/2024]
Abstract
Microscopic particle separation plays a vital role in various scientific and industrial domains. Conventional separation methods relying on external forces or physical barriers inherently exhibit limitations in terms of efficiency, selectivity, and adaptability across diverse particle types. To overcome these limitations, researchers are constantly exploring new separation approaches, among which ratchet-based separation is a noteworthy method. However, in contrast to the extensive numerical studies and experimental investigations on ratchet separation, its theoretical exploration appears weak, particularly lacking in the analysis of energy consumption involved in the separation processes. The latter is of significant importance for achieving energetically efficient separation. In this paper, we propose a nonequilibrium thermodynamic approach, extending the concept of shortcuts to isothermality, to realize controllable separation of overdamped Brownian particles with low energy cost. By utilizing a designed ratchet potential with temporal period τ, we find in the slow-driving regime that the average particle velocity v[over ¯]_{s}∝(1-D/D^{*})τ^{-1}, indicating that particles with different diffusion coefficients D can be guided to move in distinct directions with a preset D^{*}. It is revealed that an inevitable portion of the energy cost in separation depends on the driving dynamics of the ratchet, with an achievable lower bound W_{ex}^{(min)}∝L^{2}|v[over ¯]_{s}|. Here, L is the thermodynamic length of the driving loop in the parametric space. With a sawtooth potential, we numerically test the theoretical findings and illustrate the optimal separation protocol associated with W_{ex}^{(min)}. Finally, for practical considerations, we compare our approach with the conventional ratchets in terms of separation velocity and energy consumption. The scalability of the current framework for separating various particles in two-dimensional space is also demonstrated. This paper bridges the gap between thermodynamic process control and particle separation, paving the way for further thermodynamic optimization in ratchet-based particle separation.
Collapse
Affiliation(s)
| | | | - Yu-Han Ma
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Huang HB, Li G, Dong H. Qubit reset with a shortcut-to-isothermal scheme. Phys Rev E 2024; 109:064132. [PMID: 39020929 DOI: 10.1103/physreve.109.064132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 07/20/2024]
Abstract
Landauer's principle shows that the minimum energy cost to reset a classical bit in a bath with temperature T is k_{B}Tln2 in the infinite time. However, the task to reset the bit in finite time has posted a new challenge, especially for quantum bit (qubit) where both the operation time and controllability are limited. We design a shortcut-to-isothermal scheme to reset a qubit in finite time τ with limited controllability. The energy cost is minimized with the optimal control scheme with and without bound. This optimal control scheme can provide a reference to realize qubit reset with minimum energy cost for the limited time.
Collapse
|
3
|
Fei Z, Ma YH. Temperature fluctuations in mesoscopic systems. Phys Rev E 2024; 109:044101. [PMID: 38755872 DOI: 10.1103/physreve.109.044101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/26/2024] [Indexed: 05/18/2024]
Abstract
Temperature is a fundamental concept in thermodynamics. In macroscopic thermodynamics, systems possess their own intrinsic temperature which equals the reservoir temperature when they equilibrate. In stochastic thermodynamics for simple systems at the microscopic level, thermodynamic quantities other than temperature (a deterministic parameter of the reservoir) are stochastic. To bridge the disparity in the perspectives about temperature between the micro- and macroregimes, we assign a generic mesoscopic N-body system an intrinsic fluctuating temperature T in this work. We simplify the complicated dynamics of numerous particles to one stochastic differential equation with respect to T, where the noise term accounts for finite-size effects arising from random energy transfer between the system and the reservoir. Our analysis reveals that these fluctuations make the extensive quantities (in the thermodynamic limit) deviate from being extensive. Moreover, we derive finite-size corrections, characterized by heat capacity of the system, to the Jarzynski equality. A possible violation of the principle of maximum work that scales with N^{-1} is also discussed. Additionally, we examine the impact of temperature fluctuations in a finite-size Carnot engine. We show that irreversible entropy production resulting from the temperature fluctuations of the working substance diminishes the average efficiency of the cycle as η_{C}-〈η〉∼N^{-1}, highlighting the unattainability of the Carnot efficiency η_{C} for mesoscopic heat engines even under the quasistatic limit. Our general framework paves the way for further exploration of nonequilibrium thermodynamics and the corresponding finite-size effects in a mesoscopic regime.
Collapse
Affiliation(s)
- Zhaoyu Fei
- Department of Physics and Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Yu-Han Ma
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Hua Y, Guo ZY. Maximum power and the corresponding efficiency for a Carnot-like thermoelectric cycle based on fluctuation theorem. Phys Rev E 2024; 109:024130. [PMID: 38491639 DOI: 10.1103/physreve.109.024130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/02/2024] [Indexed: 03/18/2024]
Abstract
Here, we investigate the maximum power and efficiency of thermoelectric generators through devising a set of protocols for the isothermal and adiabatic processes of thermoelectricity to build a Carnot-like thermoelectric cycle, with the analysis based on fluctuation theorem. The Carnot efficiency can be readily obtained for the quasistatic thermoelectric cycle with vanishing power. The maximum power-efficiency pair of the finite-time thermoelectric cycle is derived, which is found to have the identical form to that of Brownian motors characterized by the stochastic thermodynamics. However, it is of significant discrepancy compared to the linear-irreversible and endoreversible-thermodynamics based formulations. The distinction with the linear-irreversible-thermodynamics case could result from the difference in the definitions of Peltier and Seebeck coefficients in the thermoelectric cycle. As for the endoreversible thermodynamics, we argue the applicability of endoreversibility could be questionable for analyzing the Carnot-like thermoelectric cycle, due to the incompatibility of the endoreversible hypothesis that attributes the irreversibility to finite heat transfer with thermal reservoirs, though the distinction in the mathematical expressions can vanish with the assumption that the ratio of thermoelectric power factors at the high and low temperatures (γ) is equal to the square root of the temperature ratio, γ=sqrt[T_{L}/T_{H}] (this condition could significantly deviate from the practical case). Last, utilizing our models as a concise tool to evaluate the maximum power-efficiency pairs of realistic thermoelectric material, we present a case study on the n-type silicon.
Collapse
Affiliation(s)
- Yuchao Hua
- Nantes Université, Laboratoire de thermique et énergie de Nantes, LTeN, F-44000 Nantes, France
| | - Zeng-Yuan Guo
- Tsinghua Uuniversity, Department of Engineering Mechanics, 100084 Beijing, China
| |
Collapse
|
5
|
Zhai RX, Cui FM, Ma YH, Sun CP, Dong H. Experimental test of power-efficiency trade-off in a finite-time Carnot cycle. Phys Rev E 2023; 107:L042101. [PMID: 37198805 DOI: 10.1103/physreve.107.l042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/15/2023] [Indexed: 05/19/2023]
Abstract
The Carnot cycle is a prototype of an ideal heat engine cycle to draw mechanical energy from the heat flux between two thermal baths with the maximum efficiency, dubbed as the Carnot efficiency η_{C}. Such efficiency is reached by thermodynamical equilibrium processes with infinite time, accompanied unavoidably with vanishing power-energy output per unit time. The quest to acquire high power leads to an open question of whether a fundamental maximum efficiency exists for finite-time heat engines with given power. We experimentally implement a finite-time Carnot cycle with sealed dry air as a working substance and verify the existence of a trade-off relation between power and efficiency. Efficiency up to (0.524±0.034)η_{C} is reached for the engine to generate the maximum power, consistent with the theoretical prediction η_{C}/2. Our experimental setup shall provide a platform for studying finite-time thermodynamics consisting of nonequilibrium processes.
Collapse
Affiliation(s)
- Ruo-Xun Zhai
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Fang-Ming Cui
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Normal University, Beijing 100875, China
| | - Yu-Han Ma
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
6
|
Lu J, Wang R, Wang C, Jiang JH. Thermoelectric Rectification and Amplification in Interacting Quantum-Dot Circuit-Quantum-Electrodynamics Systems. ENTROPY (BASEL, SWITZERLAND) 2023; 25:498. [PMID: 36981386 PMCID: PMC10047699 DOI: 10.3390/e25030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Thermoelectric rectification and amplification were investigated in an interacting quantum-dot circuit-quantum-electrodynamics system. By applying the Keldysh nonequilibrium Green's function approach, we studied the elastic (energy-conserving) and inelastic (energy-nonconserving) transport through a cavity-coupled quantum dot under the voltage biases in a wide spectrum of electron-electron and electron-photon interactions. While significant charge and Peltier rectification effects were found for strong light-matter interactions, the dependence on electron-electron interaction could be nonmonotonic and dramatic. Electron-electron interaction-enhanced transport was found under certain resonance conditions. These nontrivial interaction effects were found in both linear and nonlinear transport regimes, which manifested in charge and thermal currents, rectification effects, and the linear thermal transistor effect.
Collapse
Affiliation(s)
- Jincheng Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rongqian Wang
- Institute of Theoretical and Applied Physics, School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Chen Wang
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Hua Jiang
- Institute of Theoretical and Applied Physics, School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Li G, Sun CP, Dong H. Geodesic path for the optimal nonequilibrium transition: Momentum-independent protocol. Phys Rev E 2023; 107:014103. [PMID: 36797908 DOI: 10.1103/physreve.107.014103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Accelerating controlled thermodynamic processes requires an auxiliary Hamiltonian to steer the system into instantaneous equilibrium states. An extra energy cost is inevitably needed in such finite-time operation. We recently developed a geodesic approach to minimize such energy cost for the shortcut to isothermal process. The auxiliary control typically contains momentum-dependent terms, which are hard to be experimentally implemented due to the requirement of constantly monitoring the speed. In this work, we employ a variational auxiliary control without the momentum-dependent force to approximate the exact control. Following the geometric approach, we obtain the optimal control protocol with variational minimum energy cost. We demonstrate the construction of such protocol via an example of Brownian motion with a controllable harmonic potential.
Collapse
Affiliation(s)
- Geng Li
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - C P Sun
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China.,Beijing Computational Science Research Center, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| |
Collapse
|
8
|
Ma YH, Chen JF, Sun CP, Dong H. Minimal energy cost to initialize a bit with tolerable error. Phys Rev E 2022; 106:034112. [PMID: 36266886 DOI: 10.1103/physreve.106.034112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Landauer's principle imposes a fundamental limit on the energy cost to perfectly initialize a classical bit, which is only reached under the ideal operation with infinitely long time. The question on the cost in the practical operation for a bit has been raised under the constraint by the finiteness of operation time. We discover a raise-up of energy cost by L^{2}(ε)/τ from the Landaeur's limit (k_{B}Tln2) for a finite-time τ initialization of a bit with an error probability ε. The thermodynamic length L(ε) between the states before and after initializing in the parametric space increases monotonously as the error decreases. For example, in the constant dissipation coefficient (γ_{0}) case, the minimal additional cost is 0.997k_{B}T/(γ_{0}τ) for ε=1% and 1.288k_{B}T/(γ_{0}τ) for ε=0.1%. Furthermore, the optimal protocol to reach the bound of minimal energy cost is proposed for the bit initialization realized via a finite-time isothermal process.
Collapse
Affiliation(s)
- Yu-Han Ma
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
| | - Jin-Fu Chen
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
- School of Physics, Peking University, Beijing, 100871, China
| | - C P Sun
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
9
|
Chen YH, Chen JF, Fei Z, Quan HT. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle. Phys Rev E 2022; 106:024105. [PMID: 36109948 DOI: 10.1103/physreve.106.024105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The Curzon-Ahlborn (CA) efficiency, as the efficiency at the maximum power (EMP) of the endoreversible Carnot engine, has significant impact on finite-time thermodynamics. However, the CA engine is based on many assumptions. In the past few decades, although a lot of efforts have been made, a microscopic theory of the CA engine is still lacking. By adopting the method of the stochastic differential equation of energy, we formulate a microscopic theory of the CA engine realized with a highly underdamped Brownian particle in a class of nonharmonic potentials. This theory gives microscopic interpretation of all assumptions made by Curzon and Ahlborn. In other words, we find a microscopic counterpart of the CA engine in stochastic thermodynamics. Also, based on this theory, we derive the explicit expression of the protocol associated with the maximum power for any given efficiency, and we obtain analytical results of the power and the efficiency statistics for the Brownian CA engine. Our research brings new perspectives to experimental studies of finite-time microscopic heat engines featured with fluctuations.
Collapse
Affiliation(s)
- Y H Chen
- School of Physics, Peking University, Beijing 100871, China
| | - Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Zhaoyu Fei
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Koyanagi S, Tanimura Y. Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams. J Chem Phys 2022; 157:084110. [DOI: 10.1063/5.0107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the efficiency of a quantum Carnot engine based on open quantum dynamics theory. The model includes time-dependent external fields for the subsystems controlling the isothermal and isentropic processes and for the system--bath (SB) interactions controlling the transition between these processes. Numerical simulations are conducted in a nonperturbative and non-Markovian SB coupling regime using the hierarchical equations of motion under these fields at different cycle frequencies. The work applied to the total system and the heat exchanged with the baths are rigorously evaluated. In addition, by regarding quasi-static work as free energy, we compute the quantum thermodynamic variables and analyze the simulation results using thermodynamic work diagrams for the first time. Analysis of these diagrams indicates that, in the strong SB coupling region, the fields for the SB interactions are major sources of work, while in other regions, the field for the subsystem is a source of work. We find that the maximum efficiency is achieved in the quasi-static case and is determined solely by the bath temperatures, regardless of the SB coupling strength, which is a numerical manifestation of Carnot's theorem.
Collapse
|
11
|
Li G, Chen JF, Sun CP, Dong H. Geodesic Path for the Minimal Energy Cost in Shortcuts to Isothermality. PHYSICAL REVIEW LETTERS 2022; 128:230603. [PMID: 35749200 DOI: 10.1103/physrevlett.128.230603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/23/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Shortcuts to isothermality are driving strategies to steer the system to its equilibrium states within finite time, and enable evaluating the impact of a control promptly. Finding the optimal scheme to minimize the energy cost is of critical importance in applications of this strategy in pharmaceutical drug tests, biological selection, and quantum computation. We prove the equivalence between designing the optimal scheme and finding the geodesic path in the space of control parameters. Such equivalence allows a systematic and universal approach to find the optimal control to reduce the energy cost. We demonstrate the current method with examples of a Brownian particle trapped in controllable harmonic potentials.
Collapse
Affiliation(s)
- Geng Li
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Jin-Fu Chen
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - C P Sun
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| |
Collapse
|
12
|
Frim AG, DeWeese MR. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles. PHYSICAL REVIEW LETTERS 2022; 128:230601. [PMID: 35749204 DOI: 10.1103/physrevlett.128.230601] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Stochastic thermodynamics has revolutionized our understanding of heat engines operating in finite time. Recently, numerous studies have considered the optimal operation of thermodynamic cycles acting as heat engines with a given profile in thermodynamic space (e.g., P-V space in classical thermodynamics), with a particular focus on the Carnot engine. In this work, we use the lens of thermodynamic geometry to explore the full space of thermodynamic cycles with continuously varying bath temperature in search of optimally shaped cycles acting in the slow-driving regime. We apply classical isoperimetric inequalities to derive a universal geometric bound on the efficiency of any irreversible thermodynamic cycle and explicitly construct efficient heat engines operating in finite time that nearly saturate this bound for a specific model system. Given the bound, these optimal cycles perform more efficiently than all other thermodynamic cycles operating as heat engines in finite time, including notable cycles, such as those of Carnot, Stirling, and Otto. For example, in comparison to recent experiments, this corresponds to orders of magnitude improvement in the efficiency of engines operating in certain time regimes. Our results suggest novel design principles for future mesoscopic heat engines and are ripe for experimental investigation.
Collapse
Affiliation(s)
- Adam G Frim
- Department of Physics, University of California, Berkeley, Berkeley, California, 94720
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California, 94720
- Redwood Center For Theoretical Neuroscience, University of California, Berkeley, Berkeley, California, 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, 94720
| |
Collapse
|
13
|
Koyanagi S, Tanimura Y. The laws of thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz energy approach. J Chem Phys 2022; 157:014104. [DOI: 10.1063/5.0093666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using the quasi-equilibrium Helmholtz energy (qHE), defined as the thermodynamic work in a quasi-static process, we investigate the thermal properties of both an isothermal process and a transition process between the adiabatic and isothermal states (adiabatic transition). Here, the work is defined by the change in energy from a steady state to another state under a time-dependent perturbation. In particular, the work for a quasi-static change is regarded as thermodynamic work. We employ a system--bath model that involves time-dependent perturbations in both the system and the system--bath interaction. We conduct numerical experiments for a three-stroke heat machine (a Kelvin-Planck cycle). For this purpose, we employ the hierarchical equations of motion (HEOM) approach. These experiments involve an adiabatic transition field that describes the operation of an adiabatic wall between the system and the bath. Thermodynamic--work diagrams for external fields and their conjugate variables, similar to the P-V diagram, are introduced to analyze the work done for the system in the cycle. We find that the thermodynamic efficiency of this machine is zero because the field for the isothermal processes acts as a refrigerator, whereas that for the adiabatic wall acts as a heat engine. This is a numerical manifestation of the Kelvin-Planck statement, which states that it is impossible to derive mechanical effects from a single heat source. These HEOM simulations serve as a rigorous test of thermodynamic formulations because the second law of thermodynamics is only valid when the work involved in the operation of adiabatic wall is treated accurately.
Collapse
|
14
|
Gerstenmaier YC. Cyclic heat engines with nonisentropic adiabats and generalization to steady-state devices including thermoelectric converters. Phys Rev E 2022; 105:064136. [PMID: 35854556 DOI: 10.1103/physreve.105.064136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/06/2022] [Indexed: 11/07/2022]
Abstract
For heat engines (including refrigerators) the separation of total entropy production in reversible parts ΔS and irreversible contributions has proved to be very useful. The ΔS are entropies for ideal lossless processes at the hot- and cold side and are important system parameters. For Carnot-like heat engines performing finite-time cycles, the concern was raised in a preceding paper that the ΔS are not always independent from irreversibilities, if initial and final working fluid temperatures T_{f}(t) differ in the isothermal transitions. It turns out that the ΔS are unchanged and independent, if T_{f} (t) evolution is optimized for entropy minimization and apparent inconsistencies are cleared up. If nonisentropic transitions in the adiabatic cycle branches are taken into account, the difference of cold- and hot-side entropy reversibilities is equal to the entropy production in the adiabats. Maximization of cooling power is studied for various irreversible entropy models. The concepts are extended to noncyclic steady-state engines. Power maximization and efficiency calculations are performed exactly analytically. This serves as prerequisite for the hitherto unsolved problem of an accurate definition of reversible and irreversible entropy parts in thermoelectric (TE) converters in the case of inhomogeneous three-dimensional material distributions. It is revealed that for nonconstant Seebeck coefficients, additional terms to the Joule heat arise that destroy positive generator performance in the limit of heat conductance k→0, in contrast to the traditional constant material properties model. Thus, the concept of improving TE materials by reducing k is in question and an adapted figure of merit Z is presented to deal with the situation.
Collapse
|
15
|
Frim AG, DeWeese MR. Optimal finite-time Brownian Carnot engine. Phys Rev E 2022; 105:L052103. [PMID: 35706186 DOI: 10.1103/physreve.105.l052103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in experimental control of colloidal systems have spurred a revolution in the production of mesoscale thermodynamic devices. Functional "textbook" engines, such as the Stirling and Carnot cycles, have been produced in colloidal systems where they operate far from equilibrium. Simultaneously, significant theoretical advances have been made in the design and analysis of such devices. Here, we use methods from thermodynamic geometry to characterize the optimal finite-time nonequilibrium cyclic operation of the parametric harmonic oscillator in contact with a time-varying heat bath with particular focus on the Brownian Carnot cycle. We derive the optimally parametrized Carnot cycle, along with two other new cycles and compare their dissipated energy, efficiency, and steady-state power production against each other and a previously tested experimental protocol for the Carnot cycle. We demonstrate a 20% improvement in dissipated energy over previous experimentally tested protocols and a ∼50% improvement under other conditions for one of our engines, whereas our final engine is more efficient and powerful than the others we considered. Our results provide the means for experimentally realizing optimal mesoscale heat engines.
Collapse
Affiliation(s)
- Adam G Frim
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center For Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
16
|
Ye Z, Holubec V. Maximum efficiency of low-dissipation heat pumps at given heating load. Phys Rev E 2022; 105:024139. [PMID: 35291093 DOI: 10.1103/physreve.105.024139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We derive an analytical expression for maximum efficiency at fixed power of heat pumps operating along a finite-time reverse Carnot cycle under the low-dissipation assumption. The result is cumbersome, but it implies simple formulas for tight upper and lower bounds on the maximum efficiency and various analytically tractable approximations. In general, our results qualitatively agree with those obtained earlier for endoreversible heat pumps. In fact, we identify a special parameter regime when the performance of the low-dissipation and endoreversible devices is the same. At maximum power, heat pumps operate as work to heat converters with efficiency 1. Expressions for maximum efficiency at given power can be helpful in the identification of more practical operation regimes.
Collapse
Affiliation(s)
- Zhuolin Ye
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Viktor Holubec
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| |
Collapse
|
17
|
Yuan H, Ma YH, Sun CP. Optimizing thermodynamic cycles with two finite-sized reservoirs. Phys Rev E 2022; 105:L022101. [PMID: 35291152 DOI: 10.1103/physreve.105.l022101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
We study the nonequilibrium thermodynamics of a heat engine operating between two finite-sized reservoirs with well-defined temperatures. Within the linear response regime, it is found that the uniform temperature of the two reservoirs at final time τ is bounded from below by the entropy production σ_{min}∝1/τ. We discover a general power-efficiency tradeoff depending on the ratio of heat capacities (γ) of the reservoirs for the engine, and a universal efficiency at maximum average power of the engine for arbitrary γ is obtained. For practical purposes, the operation protocol of an ideal gas heat engine to achieve the optimal performance associated with σ_{min} is demonstrated. Our findings can be used to develop a general optimization scenario for thermodynamic cycles with finite-sized reservoirs in real-world circumstances.
Collapse
Affiliation(s)
- Hong Yuan
- Graduate School of China Academy of Engineering Physics, Number 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Yu-Han Ma
- Graduate School of China Academy of Engineering Physics, Number 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Graduate School of China Academy of Engineering Physics, Number 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
18
|
Barker D, Scandi M, Lehmann S, Thelander C, Dick KA, Perarnau-Llobet M, Maisi VF. Experimental Verification of the Work Fluctuation-Dissipation Relation for Information-to-Work Conversion. PHYSICAL REVIEW LETTERS 2022; 128:040602. [PMID: 35148140 DOI: 10.1103/physrevlett.128.040602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
We study experimentally work fluctuations in a Szilard engine that extracts work from information encoded as the occupancy of an electron level in a semiconductor quantum dot. We show that as the average work extracted per bit of information increases toward the Landauer limit k_{B}Tln2, the work fluctuations decrease in accordance with the work fluctuation-dissipation relation. We compare the results to a protocol without measurement and feedback and show that when no information is used, the work output and fluctuations vanish simultaneously, contrasting the information-to-energy conversion case where increasing amount of work is produced with decreasing fluctuations. Our study highlights the importance of fluctuations in the design of information-to-work conversion processes.
Collapse
Affiliation(s)
- David Barker
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Matteo Scandi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain
| | - Sebastian Lehmann
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Claes Thelander
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kimberly A Dick
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
- Centre for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
| | | | - Ville F Maisi
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
19
|
Chen JF, Sun CP, Dong H. Extrapolating the thermodynamic length with finite-time measurements. Phys Rev E 2021; 104:034117. [PMID: 34654162 DOI: 10.1103/physreve.104.034117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/27/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic length, though providing a lower bound for the excess work required in a finite-time thermodynamic process, is determined by the properties of the equilibrium states reached by the quasistatic process and is thus beyond the direct experimental measurement. We propose an experimental strategy to measure the thermodynamic length of an open classical or quantum system by extrapolating finite-time measurements. The current proposal enables the measurement of the thermodynamic length for a single control parameter without requiring extra effort to find the optimal control scheme, and is illustrated with examples of the quantum harmonic oscillator with tuning frequency and the classical ideal gas with changing volume. Such a strategy shall shed light on the experimental design of the lacking platforms to measure the thermodynamic length.
Collapse
Affiliation(s)
- Jin-Fu Chen
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
20
|
Ye Z, Holubec V. Maximum efficiency of absorption refrigerators at arbitrary cooling power. Phys Rev E 2021; 103:052125. [PMID: 34134287 DOI: 10.1103/physreve.103.052125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
We consider absorption refrigerators consisting of simultaneously operating Carnot-type heat engine and refrigerator. Their maximum efficiency at given power (MEGP) is given by the product of MEGPs for the internal engine and refrigerator. The only subtlety of the derivation lies in the fact that the maximum cooling power of the absorption refrigerator is not limited just by the maximum power of the internal refrigerator, but, due to the first law, also by that of the internal engine. As a specific example, we consider the simultaneous absorption refrigerators composed of low-dissipation (LD) heat engines and refrigerators, for which the expressions for MEGPs are known. The derived expression for maximum efficiency implies bounds on the MEGP of LD absorption refrigerators. It also implies that a slight decrease in power of the absorption refrigerator from its maximum value results in a large nonlinear increase in efficiency, observed in heat engines, whenever the ratio of maximum powers of the internal engine and the refrigerator does not diverge. Otherwise, the increase in efficiency is linear as observed in LD refrigerators. Thus, in all practical situations, the efficiency of LD absorption refrigerators significantly increases when their cooling power is slightly decreased from its maximum.
Collapse
Affiliation(s)
- Zhuolin Ye
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| |
Collapse
|
21
|
Chen JF, Li Y, Dong H. Simulating Finite-Time Isothermal Processes with Superconducting Quantum Circuits. ENTROPY (BASEL, SWITZERLAND) 2021; 23:353. [PMID: 33809653 PMCID: PMC8002232 DOI: 10.3390/e23030353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
Finite-time isothermal processes are ubiquitous in quantum-heat-engine cycles, yet complicated due to the coexistence of the changing Hamiltonian and the interaction with the thermal bath. Such complexity prevents classical thermodynamic measurements of a performed work. In this paper, the isothermal process is decomposed into piecewise adiabatic and isochoric processes to measure the performed work as the internal energy change in adiabatic processes. The piecewise control scheme allows the direct simulation of the whole process on a universal quantum computer, which provides a new experimental platform to study quantum thermodynamics. We implement the simulation on ibmqx2 to show the 1/τ scaling of the extra work in finite-time isothermal processes.
Collapse
Affiliation(s)
- Jin-Fu Chen
- Beijing Computational Science Research Center, Beijing 100193, China;
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China;
| | - Ying Li
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China;
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China;
| |
Collapse
|
22
|
Gonzalez-Ayala J, Medina A, Roco JMM, Calvo Hernández A. Thermodynamic optimization subsumed in stability phenomena. Sci Rep 2020; 10:14305. [PMID: 32868825 PMCID: PMC7459129 DOI: 10.1038/s41598-020-71130-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022] Open
Abstract
In the present paper the possibility of an energetic self-optimization as a consequence of thermodynamic stability is addressed. This feature is analyzed in a low dissipation refrigerator working in an optimized trade-off regime (the so-called Omega function). The relaxation after a perturbation around the stable point indicates that stability is linked to trajectories in which the thermodynamic performance is improved. Furthermore, a limited control over the system is analyzed through consecutive external random perturbations. The statistics over many cycles corroborates the preference for a better thermodynamic performance. Endoreversible and irreversible behaviors play a relevant role in the relaxation trajectories (as well as in the statistical performance of many cycles experiencing random perturbations). A multi-objective optimization reveals that the well-known endoreversible limit works as an attractor of the system evolution coinciding with the Pareto front, which represents the best energetic compromise among efficiency, entropy generation, cooling power, input power and the Omega function. Meanwhile, near the stable state, performance and stability are dominated by an irreversible behavior.
Collapse
Affiliation(s)
- J Gonzalez-Ayala
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008, Salamanca, Spain.
| | - A Medina
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008, Salamanca, Spain
- Departamento de Física Aplicada, Facultad de Ciencias, 37008, Salamanca, Spain
| | - J M M Roco
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008, Salamanca, Spain
- Departamento de Física Aplicada, Facultad de Ciencias, 37008, Salamanca, Spain
| | - A Calvo Hernández
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, 37008, Salamanca, Spain
- Departamento de Física Aplicada, Facultad de Ciencias, 37008, Salamanca, Spain
| |
Collapse
|