1
|
Wang J, Mao R, Xu X, Lu Y, Dai J, Liu X, Liu GQ, Lu D, Hu H, Zhu SY, Cai H, Wang DW. Velocity Scanning Tomography for Room-Temperature Quantum Simulation. PHYSICAL REVIEW LETTERS 2024; 133:183403. [PMID: 39547159 DOI: 10.1103/physrevlett.133.183403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024]
Abstract
Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we implement a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs. By comparing absorption spectra with and without atoms moving at specific velocities, we can derive the Wannier-Stark ladders of the SL across various effective static electric fields, their strengths being proportional to the atomic velocities. We extract the Zak phase of the SL by monitoring the ladder frequency shift as a function of the atomic velocity, effectively demonstrating the topological winding of the energy bands. Our research signifies the feasibility of room-temperature quantum simulation and facilitates their applications in quantum information processing.
Collapse
Affiliation(s)
- Jiefei Wang
- Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruosong Mao
- Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Xingqi Xu
- Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Yunzhou Lu
- Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Jianhao Dai
- Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Xiao Liu
- Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | | | | | | | - Shi-Yao Zhu
- Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
| | | | - Da-Wei Wang
- Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
2
|
Ji L, He Y, Cai Q, Fang Z, Wang Y, Qiu L, Zhou L, Wu S, Grava S, Chang DE. Superradiant Detection of Microscopic Optical Dipolar Interactions. PHYSICAL REVIEW LETTERS 2023; 131:253602. [PMID: 38181370 DOI: 10.1103/physrevlett.131.253602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 01/07/2024]
Abstract
The interaction between light and cold atoms is a complex phenomenon potentially featuring many-body resonant dipole interactions. A major obstacle toward exploring these quantum resources of the system is macroscopic light propagation effects, which not only limit the available time for the microscopic correlations to locally build up, but also create a directional, superradiant emission background whose variations can overwhelm the microscopic effects. In this Letter, we demonstrate a method to perform "background-free" detection of the microscopic optical dynamics in a laser-cooled atomic ensemble. This is made possible by transiently suppressing the macroscopic optical propagation over a substantial time, before a recall of superradiance that imprints the effect of the accumulated microscopic dynamics onto an efficiently detectable outgoing field. We apply this technique to unveil and precisely characterize a density-dependent, microscopic dipolar dephasing effect that generally limits the lifetime of optical spin-wave order in ensemble-based atom-light interfaces.
Collapse
Affiliation(s)
- Lingjing Ji
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yizun He
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Qingnan Cai
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Zhening Fang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yuzhuo Wang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Liyang Qiu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Lei Zhou
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Saijun Wu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Stefano Grava
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain and ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| | - Darrick E Chang
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain and ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| |
Collapse
|
3
|
Liedl C, Pucher S, Tebbenjohanns F, Schneeweiss P, Rauschenbeutel A. Collective Radiation of a Cascaded Quantum System: From Timed Dicke States to Inverted Ensembles. PHYSICAL REVIEW LETTERS 2023; 130:163602. [PMID: 37154641 DOI: 10.1103/physrevlett.130.163602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
The collective absorption and emission of light by an ensemble of atoms is at the heart of many fundamental quantum optical effects and the basis for numerous applications. However, beyond weak excitation, both experiment and theory become increasingly challenging. Here, we explore the regimes from weak excitation to inversion with ensembles of up to 1000 atoms that are trapped and optically interfaced using the evanescent field surrounding an optical nanofiber. We realize full inversion, with about 80% of the atoms being excited, and study their subsequent radiative decay into the guided modes. The data are very well-described by a simple model that assumes a cascaded interaction of the guided light with the atoms. Our results contribute to the fundamental understanding of the collective interaction of light and matter and are relevant for applications ranging from quantum memories to sources of nonclassical light to optical frequency standards.
Collapse
Affiliation(s)
- Christian Liedl
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Sebastian Pucher
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Felix Tebbenjohanns
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Philipp Schneeweiss
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Arno Rauschenbeutel
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
4
|
Zhao J, Wang Y, Huang X, Wu S. Spectroscopic atomic sample plane localization for precise digital holography. OPTICS EXPRESS 2023; 31:9448-9465. [PMID: 37157516 DOI: 10.1364/oe.477878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In digital holography, the coherent scattered light fields can be reconstructed volumetrically. By refocusing the fields to the sample planes, absorption and phase-shift profiles of sparsely distributed samples can be simultaneously inferred in 3D. This holographic advantage is highly useful for spectroscopic imaging of cold atomic samples. However, unlike e.g. biological samples or solid particles, the quasi-thermal atomic gases under laser-cooling are typically featureless without sharp boundaries, invalidating a class of standard numerical refocusing methods. Here, we extend the refocusing protocol based on the Gouy phase anomaly for small phase objects to free atomic samples. With a prior knowledge on a coherent spectral phase angle relation for cold atoms that is robust against probe condition variations, an "out-of-phase" response of the atomic sample can be reliably identified, which flips the sign during the numeric back-propagation across the sample plane to serve as the refocus criterion. Experimentally, we determine the sample plane of a laser-cooled 39K gas released from a microscopic dipole trap, with a δz ≈ 1 µm ≪ 2λp/NA2 axial resolution, with a NA=0.3 holographic microscope at λp = 770 nm probe wavelength.
Collapse
|
5
|
Xu X, Wang J, Dai J, Mao R, Cai H, Zhu SY, Wang DW. Floquet Superradiance Lattices in Thermal Atoms. PHYSICAL REVIEW LETTERS 2022; 129:273603. [PMID: 36638288 DOI: 10.1103/physrevlett.129.273603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Floquet modulation has been widely used in optical lattices for coherent control of quantum gases, in particular for synthesizing artificial gauge fields and simulating topological matters. However, such modulation induces heating which can overwhelm the signal of quantum dynamics in ultracold atoms. Here we report that the thermal motion, instead of being a noise source, provides a new control knob in Floquet-modulated superradiance lattices, which are momentum-space tight-binding lattices of collectively excited states of atoms. The Doppler shifts combined with Floquet modulation provide effective forces along arbitrary directions in a lattice in frequency and momentum dimensions. Dynamic localization, dynamic delocalization, and chiral edge currents can be simultaneously observed from a single transport spectrum of superradiance lattices in thermal atoms. Our Letter paves a way for simulating Floquet topological matters in room-temperature atoms and facilitates their applications in photonic devices.
Collapse
Affiliation(s)
- Xingqi Xu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Jiefei Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianhao Dai
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Ruosong Mao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Han Cai
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shi-Yao Zhu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Hefei National Laboratory, Hefei 230088, China
| | - Da-Wei Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Hefei National Laboratory, Hefei 230088, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Holzinger R, Gutiérrez-Jáuregui R, Hönigl-Decrinis T, Kirchmair G, Asenjo-Garcia A, Ritsch H. Control of Localized Single- and Many-Body Dark States in Waveguide QED. PHYSICAL REVIEW LETTERS 2022; 129:253601. [PMID: 36608230 DOI: 10.1103/physrevlett.129.253601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Subradiant states in a finite chain of two-level quantum emitters coupled to a one-dimensional reservoir are a resource for superior photon storage and their controlled release. As one can maximally store one energy quantum per emitter, storing multiple excitations requires delocalized states, which typically exhibit fermionic correlations and antisymmetric wave functions, thus making them hard to access experimentally. Here we identify a new class of quasilocalized dark states with up to half of the qubits excited, which only appear for lattice constants of an integer multiple of the wavelength. These states allow for a high-fidelity preparation and minimally invasive readout in state-of-the-art setups. In particular, we suggest an experimental implementation using a coplanar waveguide coupled to superconducting transmon qubits on a chip. With minimal free space and intrinsic losses, virtually perfect dark states can be achieved for a low number of qubits featuring fast preparation and precise manipulation.
Collapse
Affiliation(s)
- R Holzinger
- Institute for Theoretical Physics, Innsbruck University, Technikerstrasse 21a, 6020 Innsbruck, Austria
| | | | - T Hönigl-Decrinis
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| | - G Kirchmair
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| | - A Asenjo-Garcia
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - H Ritsch
- Institute for Theoretical Physics, Innsbruck University, Technikerstrasse 21a, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Mao R, Xu X, Wang J, Xu C, Qian G, Cai H, Zhu SY, Wang DW. Measuring Zak phase in room-temperature atoms. LIGHT, SCIENCE & APPLICATIONS 2022; 11:291. [PMID: 36210366 PMCID: PMC9548506 DOI: 10.1038/s41377-022-00990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cold atoms provide a flexible platform for synthesizing and characterizing topological matter, where geometric phases play a central role. However, cold atoms are intrinsically prone to thermal noise, which can overwhelm the topological response and hamper promised applications. On the other hand, geometric phases also determine the energy spectra of particles subjected to a static force, based on the polarization relation between Wannier-Stark ladders and geometric Zak phases. By exploiting this relation, we develop a method to extract geometric phases from energy spectra of room-temperature superradiance lattices, which are momentum-space lattices of timed Dicke states. In such momentum-space lattices the thermal motion of atoms, instead of being a source of noise, provides effective forces which lead to spectroscopic signatures of the Zak phases. We measure Zak phases directly from the anti-crossings between Wannier-Stark ladders in the Doppler-broadened absorption spectra of superradiance lattices. Our approach paves the way of measuring topological invariants and developing their applications in room-temperature atoms.
Collapse
Affiliation(s)
- Ruosong Mao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Xingqi Xu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Jiefei Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Chenran Xu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Gewei Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Han Cai
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Shi-Yao Zhu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Da-Wei Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Hefei National Laboratory, Hefei, 230088, China.
- CAS Center of Excellence in Topological Quantum Computation, 100190, Beijing, China.
| |
Collapse
|
8
|
Liu R, Ma Y, Ji L, Qiu L, Ji M, Tao Z, Wu S. Composite acousto-optical modulation. OPTICS EXPRESS 2022; 30:27780-27793. [PMID: 36236941 DOI: 10.1364/oe.445719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/06/2022] [Indexed: 06/16/2023]
Abstract
We propose a composite acousto-optical modulation (AOM) scheme for wide-band, efficient modulation of CW and pulsed lasers. We show that by adjusting the amplitudes and phases of weakly-driven daughter AOMs, diffraction beyond the Bragg condition can be achieved with exceptional efficiencies. Furthermore, by imaging pairs of AOMs with opposite directions of sound-wave propagation, high contrast switching of output orders can be achieved at the driving radio frequency (rf) limit, thereby enabling efficient bidirectional routing of a synchronized mode-locked laser. Here we demonstrate a simplest example of such scheme with a double-AOM setup for efficient diffraction across an octave of rf bandwidth, and for routing a mode-locked pulse train with up to frep = 400 MHz repetition rate. We discuss extension of the composite scheme toward multi-path routing and time-domain multiplexing, so as to individually shape each pulses of ultrafast lasers for novel quantum control applications.
Collapse
|
9
|
Zhang YX, Mølmer K. Free-Fermion Multiply Excited Eigenstates and Their Experimental Signatures in 1D Arrays of Two-Level Atoms. PHYSICAL REVIEW LETTERS 2022; 128:093602. [PMID: 35302803 DOI: 10.1103/physrevlett.128.093602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
One-dimensional (1D) subwavelength atom arrays display multiply excited subradiant eigenstates which are reminiscent of free fermions. So far, these states have been associated with subradiant states with decay rates ∝N^{-3}, with N the number of atoms, which fundamentally prevents detection of their fermionic features by optical means. In this Letter, we show that free-fermion states generally appear whenever the band of singly excited states has a quadratic dispersion relation at the band edge and, hence, may also be obtained with radiant and even superradiant states. 1D arrays have free-fermion multiply excited eigenstates that are typically either subradiant or (super)radiant, and we show that a simple transformation acts between the two families. Based on this correspondence, we propose different means for their preparation and analyze their experimental signature in optical detection.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Klaus Mølmer
- Aarhus Institute of Advanced Studies, Aarhus University and Center for Complex Quantum Systems (CCQ), Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Clarke BS, Gould PL. Amplification of pulsed light with arbitrary frequency chirps on nanosecond timescales. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:013002. [PMID: 35104952 DOI: 10.1063/5.0076633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
We have developed a system for producing amplified pulses of frequency-chirped light at 780 nm on nanosecond timescales. The system starts with tunable cw laser light and employs a pair of fiber-based phase modulators, a semiconductor optical amplifier, and a tapered amplifier to achieve chirp rates exceeding 3 GHz/10 ns and peak powers greater than 1 W. Driving the modulators with an arbitrary waveform generator enables arbitrary chirp shapes, such as two-frequency linear chirps. We overcome the optical power limitations of the modulators by duty cycling and avoid unseeded operation of the tapered amplifier by multiplexing the chirped pulses with "dummy" light from a separate diode laser.
Collapse
Affiliation(s)
- B S Clarke
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - P L Gould
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
11
|
He Y, Mao R, Cai H, Zhang JX, Li Y, Yuan L, Zhu SY, Wang DW. Flat-Band Localization in Creutz Superradiance Lattices. PHYSICAL REVIEW LETTERS 2021; 126:103601. [PMID: 33784152 DOI: 10.1103/physrevlett.126.103601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Flat bands play an important role in diffraction-free photonics and attract fundamental interest in many-body physics. Here we report the engineering of flat-band localization of collective excited states of atoms in Creutz superradiance lattices with tunable synthetic gauge fields. Magnitudes and phases of the lattice hopping coefficients can be independently tuned to control the state components of the flat band and the Aharonov-Bohm phases. We can selectively excite the flat band and control the flat-band localization with the synthetic gauge field. Our study provides a room-temperature platform for flat bands of atoms and holds promising applications in exploring correlated topological materials.
Collapse
Affiliation(s)
- Yanyan He
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Ruosong Mao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Han Cai
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Jun-Xiang Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Yongqiang Li
- Department of Physics, National University of Defense Technology, Changsha 410073, Hunan Province, China
| | - Luqi Yuan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Yao Zhu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Da-Wei Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Cipris A, Moreira NA, do Espirito Santo TS, Weiss P, Villas-Boas CJ, Kaiser R, Guerin W, Bachelard R. Subradiance with Saturated Atoms: Population Enhancement of the Long-Lived States. PHYSICAL REVIEW LETTERS 2021; 126:103604. [PMID: 33784122 DOI: 10.1103/physrevlett.126.103604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 05/12/2023]
Abstract
Dipole-dipole interactions are at the origin of long-lived collective atomic states, often called subradiant, which are explored for their potential use in novel photonic devices or in quantum protocols. Here, we study subradiance beyond the single-excitation regime and experimentally demonstrate a 200-fold increase in the population of these modes, as the saturation parameter of the driving field is increased. We attribute this enhancement to a mechanism similar to optical pumping through the well-coupled superradiant states. The lifetimes are unaffected by the pump strength, as the system is ultimately driven toward the single-excitation sector. Our study is a new step in the exploration of the many-body dynamics of large open systems.
Collapse
Affiliation(s)
- A Cipris
- Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
| | - N A Moreira
- Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - T S do Espirito Santo
- Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - P Weiss
- Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
| | - C J Villas-Boas
- Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235-SP-310, 13565-905 São Carlos, SP, Brazil
| | - R Kaiser
- Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
| | - W Guerin
- Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
| | - R Bachelard
- Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235-SP-310, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|