1
|
Zhang P, Xue M, Chen C, Guo W, Zhang Z. Mechanism Regulating Self-Intercalation in Layered Materials. NANO LETTERS 2023; 23:3623-3629. [PMID: 37043360 DOI: 10.1021/acs.nanolett.3c00827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.
Collapse
Affiliation(s)
- Peikun Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Minmin Xue
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
2
|
The Role of Orbital Nesting in the Superconductivity of Iron-Based Superconductors. CONDENSED MATTER 2021. [DOI: 10.3390/condmat6030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We analyze the magnetic excitations and the spin-mediated superconductivity in iron-based superconductors within a low energy model that operates in the band basis, but fully incorporates the orbital character of the spin excitations. We show how the orbital selectivity, encoded in our low energy description, simplifies substantially the analysis and allows for analytical treatments, while retaining all the main features of both spin excitations and gap functions computed using multiorbital models. Importantly, our analysis unveils the orbital matching between the hole and electron pockets as the key parameter to determine the momentum dependence and the hierarchy of the superconducting gaps, instead of the Fermi surface matching, as in the common nesting scenario.
Collapse
|
3
|
Guo M, Lai X, Deng J, He L, Hao J, Tan X, Ren Y, Jian J. NaOH-Intercalated Iron Chalcogenides (Na 1-xOH)Fe 1-yX (X = Se, S): Ion-Exchange Synthesis and Physical Properties. Inorg Chem 2021; 60:8742-8753. [PMID: 34086448 DOI: 10.1021/acs.inorgchem.1c00713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery of the (Li1-xFexOH)FeSe superconductor has aroused significant interest in metal hydroxide-intercalated iron chalcogenides. However, all efforts made to intercalate NaOH between FeSe and FeS layers have failed so far. Here we report two NaOH-intercalated iron chalcogenides (Na1-xOH)Fe1-yX (X = Se, S) that were synthesized by a low-temperature hydrothermal ion-exchange method. Their crystal structures were solved through single-crystal X-ray diffraction and refined against powder X-ray and neutron diffraction data. Different from the (Li1-xFexOH)FeX superconductors that crystallize in a tetragonal space group P4/nmm with Z = 2, (Na1-xOH)Fe1-yX belong to an orthorhombic space group Cmma with Z = 4. The structural solution also reveals that there are vacancies in both Na and Fe sites and there are not iron ions in the (Na1-xOH) layer. This is probably why both Fe(II) and Fe(III) species exist in the title compounds, as detected by X-ray photoelectron spectroscopy. Based on magnetization and electrical resistivity measurements, the two compounds were found to be paramagnetic semiconductors. The absence of superconductivity should be closely related to the iron vacancies in the Fe1-yX layer. Theoretical calculations suggest that inducing superconductivity in (Na1-xOH)Fe1-ySe is promising due to the similarity of the electronic structures between stoichiometric (NaOH)FeSe and the (Li1-xFexOH)FeSe superconductor.
Collapse
Affiliation(s)
- Minhao Guo
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaofang Lai
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jun Deng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lunhua He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Spallation Neutron Source Science Center, Dongguan 523803, P. R. China.,Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China
| | - Jiazheng Hao
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China.,Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Tan
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yurong Ren
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jikang Jian
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|