1
|
Blodgett KN, Peana D, Phatak SS, Terry LM, Montes MP, Hood JD. Imaging a ^{6}Li Atom in an Optical Tweezer 2000 Times with Λ-Enhanced Gray Molasses. PHYSICAL REVIEW LETTERS 2023; 131:083001. [PMID: 37683168 DOI: 10.1103/physrevlett.131.083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
We have imaged lithium-6 thousands of times in an optical tweezer using Λ-enhanced gray molasses cooling light. Despite being the lightest alkali metal, with a recoil temperature of 3.5 μK, we achieve an imaging survival of 0.999 50(2), which sets the new benchmark for low-loss imaging of neutral atoms in optical tweezers. Lithium is loaded directly from a magneto-optical trap into a tweezer with an enhanced loading rate of 0.7. We cool the atom to 70 μK and present a new cooling model that accurately predicts steady-state temperature and scattering rate in the tweezer. These results pave the way for ground state preparation of lithium en route to the assembly of the LiCs molecule in its ground state.
Collapse
Affiliation(s)
- Karl N Blodgett
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - David Peana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Saumitra S Phatak
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lane M Terry
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Maria Paula Montes
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jonathan D Hood
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
2
|
Mukherjee S, Smith NR. Dynamical phase transition in the occupation fraction statistics for noncrossing Brownian particles. Phys Rev E 2023; 107:064133. [PMID: 37464710 DOI: 10.1103/physreve.107.064133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
We consider a system of N noncrossing Brownian particles in one dimension. We find the exact rate function that describes the long-time large deviation statistics of their occupation fraction in a finite interval in space. Remarkably, we find that, for any general N≥2, the system undergoes N-1 dynamical phase transitions of second order. The N-1 transitions are the boundaries of N phases that correspond to different numbers of particles which are in the vicinity of the interval throughout the dynamics. We achieve this by mapping the problem to that of finding the ground-state energy for N noninteracting spinless fermions in a square-well potential. The phases correspond to different numbers of single-body bound states for the quantum problem. We also study the process conditioned on a given occupation fraction and the large-N limiting behavior.
Collapse
Affiliation(s)
- Soheli Mukherjee
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Naftali R Smith
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
3
|
Liu R, Peng C, Cui X. Universal Tetramer and Pentamer Bound States in Two-Dimensional Fermionic Mixtures. PHYSICAL REVIEW LETTERS 2022; 129:073401. [PMID: 36018681 DOI: 10.1103/physrevlett.129.073401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/03/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
We study the emergence of universal tetramer and pentamer bound states in the two-dimensional (N+1) system, which consists of N identical heavy fermions interacting with a light atom. We show that the critical heavy-light mass ratio to support a (3+1) tetramer below the trimer threshold is 3.38, and to support a (4+1) pentamer below the tetramer threshold is 5.14. While the ground state tetramer and pentamer are both with zero total angular momentum, they exhibit very different density distributions and correlations in momentum space, due to their distinct angular momentum decompositions in the dimer-fermion frame. These universal bound states can be accessible by a number of Fermi-Fermi mixtures now realized in cold atoms laboratories, which also suggest novel few-body correlations dominant in their corresponding many-body systems.
Collapse
Affiliation(s)
- Ruijin Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Cheng Peng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Cui
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
4
|
Observation of Cooper pairs in a mesoscopic two-dimensional Fermi gas. Nature 2022; 606:287-291. [PMID: 35676427 DOI: 10.1038/s41586-022-04678-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
The formation of strongly correlated fermion pairs is fundamental for the emergence of fermionic superfluidity and superconductivity1. For instance, Cooper pairs made of two electrons of opposite spin and momentum at the Fermi surface of the system are a key ingredient of Bardeen-Cooper-Schrieffer (BCS) theory-the microscopic explanation of the emergence of conventional superconductivity2. Understanding the mechanism behind pair formation is an ongoing challenge in the study of many strongly correlated fermionic systems3. Controllable many-body systems that host Cooper pairs would thus be desirable. Here we directly observe Cooper pairs in a mesoscopic two-dimensional Fermi gas. We apply an imaging scheme that enables us to extract the full in situ momentum distribution of a strongly interacting Fermi gas with single-particle and spin resolution4. Our ultracold gas enables us to freely tune between a completely non-interacting, unpaired system and weak attractions, where we find Cooper pair correlations at the Fermi surface. When increasing the attractive interactions even further, the pairs gradually turn into deeply bound molecules that break up the Fermi surface. Our mesoscopic system is closely related to the physics of nuclei, superconducting grains or quantum dots5-7. With the precise control over the interactions, particle number and potential landscape in our experiment, the observables we establish in this work provide an approach for answering longstanding questions concerning not only such mesoscopic systems but also their connection to the macroscopic world.
Collapse
|
5
|
Bekassy V, Hofmann J. Nonrelativistic Conformal Invariance in Mesoscopic Two-Dimensional Fermi Gases. PHYSICAL REVIEW LETTERS 2022; 128:193401. [PMID: 35622033 DOI: 10.1103/physrevlett.128.193401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/10/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional Fermi gases with universal short-range interactions are known to exhibit a quantum anomaly, where a classical scale and conformal invariance is broken by quantum effects at strong coupling. We argue that in a quasi two-dimensional geometry, a conformal window remains at weak interactions. Using degenerate perturbation theory, we verify the conformal symmetry by computing the energy spectrum of mesoscopic particle ensembles in a harmonic trap, which separates into conformal towers formed by so-called primary states and their center-of-mass and breathing-mode excitations, the latter having excitation energies at precisely twice the harmonic oscillator energy. In addition, using Metropolis importance sampling, we compute the hyperradial distribution function of the many-body wave functions, which are predicted by the conformal symmetry in closed analytical form. The weakly interacting Fermi gas constitutes a system where the nonrelativistic conformal symmetry can be revealed using elementary methods, and our results are testable in current experiments on mesoscopic Fermi gases.
Collapse
Affiliation(s)
- Viktor Bekassy
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Johannes Hofmann
- Department of Physics, Gothenburg University, 41296 Gothenburg, Sweden
| |
Collapse
|
6
|
Sanner C, Sonderhouse L, Hutson RB, Yan L, Milner WR, Ye J. Pauli blocking of atom-light scattering. Science 2021; 374:979-983. [PMID: 34793223 DOI: 10.1126/science.abh3483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Christian Sanner
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
| | - Lindsay Sonderhouse
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
| | - Ross B Hutson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
| | - Lingfeng Yan
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
| | - William R Milner
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Kokail C, Sundar B, Zache TV, Elben A, Vermersch B, Dalmonte M, van Bijnen R, Zoller P. Quantum Variational Learning of the Entanglement Hamiltonian. PHYSICAL REVIEW LETTERS 2021; 127:170501. [PMID: 34739272 DOI: 10.1103/physrevlett.127.170501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a topological phase.
Collapse
Affiliation(s)
- Christian Kokail
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Bhuvanesh Sundar
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- JILA, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Torsten V Zache
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Andreas Elben
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Benoît Vermersch
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
| | - Marcello Dalmonte
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Rick van Bijnen
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Peter Zoller
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
8
|
Pair-correlation ansatz for the ground state of interacting bosons in an arbitrary one-dimensional potential. Sci Rep 2021; 11:13168. [PMID: 34162935 PMCID: PMC8222403 DOI: 10.1038/s41598-021-92556-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
We derive and describe a very accurate variational scheme for the ground state of the system of a few ultra-cold bosons confined in one-dimensional traps of arbitrary shapes. It is based on assumption that all inter-particle correlations have two-body nature. By construction, the proposed ansatz is exact in the noninteracting limit, exactly encodes boundary conditions forced by contact interactions, and gives full control on accuracy in the limit of infinite repulsions. We show its efficiency in a whole range of intermediate interactions for different external potentials. Our results manifest that for generic non-parabolic potentials mutual correlations forced by interactions cannot be captured by distance-dependent functions.
Collapse
|