1
|
Tečer M, Di Liberto M, Silvi P, Montangero S, Romanato F, Calajó G. Strongly Interacting Photons in 2D Waveguide QED. PHYSICAL REVIEW LETTERS 2024; 132:163602. [PMID: 38701484 DOI: 10.1103/physrevlett.132.163602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/05/2024]
Abstract
One-dimensional confinement in waveguide quantum electrodynamics (QED) plays a crucial role to enhance light-matter interactions and to induce a strong quantum nonlinear optical response. In two or higher-dimensional settings, this response is reduced since photons can be emitted within a larger phase space, opening the question whether strong photon-photon interaction can be still achieved. In this study, we positively answer this question for the case of a 2D square array of atoms coupled to the light confined into a two-dimensional waveguide. More specifically, we demonstrate the occurrence of long-lived two-photon repulsive and bound states with genuine 2D features. Furthermore, we observe signatures of these effects also in free-space atomic arrays in the form of weakly subradiant in-band scattering resonances. Our findings provide a paradigmatic signature of the presence of strong photon-photon interactions in 2D waveguide QED.
Collapse
Affiliation(s)
- Matija Tečer
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
| | - Marco Di Liberto
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| | - Pietro Silvi
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| | - Simone Montangero
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| | - Filippo Romanato
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- CNR-IOM Istituto Officina dei Materiali, Trieste, Italy
| | - Giuseppe Calajó
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| |
Collapse
|
2
|
Roccati F, Bello M, Gong Z, Ueda M, Ciccarello F, Chenu A, Carollo A. Hermitian and non-Hermitian topology from photon-mediated interactions. Nat Commun 2024; 15:2400. [PMID: 38493191 PMCID: PMC10944496 DOI: 10.1038/s41467-024-46471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
As light can mediate interactions between atoms in a photonic environment, engineering it for endowing the photon-mediated Hamiltonian with desired features, like robustness against disorder, is crucial in quantum research. We provide general theorems on the topology of photon-mediated interactions in terms of both Hermitian and non-Hermitian topological invariants, unveiling the phenomena of topological preservation and reversal, and revealing a system-bath topological correspondence. Depending on the Hermiticity of the environment and the parity of the spatial dimension, the atomic and photonic topological invariants turn out to be equal or opposite. Consequently, the emergence of atomic and photonic topological boundary modes with opposite group velocities in two-dimensional Hermitian topological systems is established. Owing to its general applicability, our results can guide the design of topological systems.
Collapse
Affiliation(s)
- Federico Roccati
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg, Luxembourg.
| | - Miguel Bello
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, Garching, 85748, Germany
- Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799, München, Germany
| | - Zongping Gong
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, Garching, 85748, Germany
- Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799, München, Germany
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama, 351-0198, Japan
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masahito Ueda
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
- Institute for Physics of Intelligence, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Francesco Ciccarello
- Università degli Studi di Palermo, Dipartimento di Fisica e Chimica-Emilio Segrè, via Archirafi 36, I-90123, Palermo, Italy
- NEST, Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127, Pisa, Italy
| | - Aurélia Chenu
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg, Luxembourg
| | - Angelo Carollo
- Università degli Studi di Palermo, Dipartimento di Fisica e Chimica-Emilio Segrè, via Archirafi 36, I-90123, Palermo, Italy
| |
Collapse
|
3
|
Cheng Z, Guan YJ, Xue H, Ge Y, Jia D, Long Y, Yuan SQ, Sun HX, Chong Y, Zhang B. Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal. Nat Commun 2024; 15:2174. [PMID: 38467627 PMCID: PMC10928213 DOI: 10.1038/s41467-024-46517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
When electrons moving in two dimensions (2D) are subjected to a strong uniform magnetic field, they form flat bands called Landau levels (LLs). LLs can also arise from pseudomagnetic fields (PMFs) induced by lattice distortions. In three-dimensional (3D) systems, there has been no experimental demonstration of LLs as a type of flat band thus far. Here, we report the experimental realization of a flat 3D LL in an acoustic crystal. Starting from a lattice whose bandstructure exhibits a nodal ring, we design an inhomogeneous distortion corresponding to a specific pseudomagnetic vector potential (PVP). This distortion causes the nodal ring states to break up into LLs, including a zeroth LL that is flat along all three directions. These findings suggest the possibility of using nodal ring materials to generate 3D flat bands, allowing access to strong interactions and other attractive physical regimes in 3D.
Collapse
Affiliation(s)
- Zheyu Cheng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yi-Jun Guan
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, 212013, Zhenjiang, China
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Haoran Xue
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yong Ge
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Ding Jia
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Yang Long
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shou-Qi Yuan
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Hong-Xiang Sun
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, 212013, Zhenjiang, China.
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Yidong Chong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore.
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
4
|
Ke Y, Huang J, Liu W, Kivshar Y, Lee C. Topological Inverse Band Theory in Waveguide Quantum Electrodynamics. PHYSICAL REVIEW LETTERS 2023; 131:103604. [PMID: 37739358 DOI: 10.1103/physrevlett.131.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Topological phases play a crucial role in the fundamental physics of light-matter interaction and emerging applications of quantum technologies. However, the topological band theory of waveguide QED systems is known to break down, because the energy bands become disconnected. Here, we introduce a concept of the inverse energy band and explore analytically topological scattering in a waveguide with an array of quantum emitters. We uncover a rich structure of topological phase transitions, symmetric scale-free localization, completely flat bands, and the corresponding dark Wannier states. Although bulk-edge correspondence is partially broken because of radiative decay, we prove analytically that the scale-free localized states are distributed in a single inverse energy band in the topological phase and in two inverse bands in the trivial phase. Surprisingly, the winding number of the scattering textures depends on both the topological phase of inverse subradiant band and the odevity of the cell number. Our Letter uncovers the field of the topological inverse bands, and it brings a novel vision to topological phases in light-matter interactions.
Collapse
Affiliation(s)
- Yongguan Ke
- Institute of Quantum Precision Measurement, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Quantum Engineering and Quantum Metrology, School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
| | - Jiaxuan Huang
- Laboratory of Quantum Engineering and Quantum Metrology, School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
| | - Wenjie Liu
- Laboratory of Quantum Engineering and Quantum Metrology, School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
- Quantum Science Center of Guangdong-Hongkong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| | - Chaohong Lee
- Institute of Quantum Precision Measurement, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Quantum Science Center of Guangdong-Hongkong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
García-Elcano I, Merino J, Bravo-Abad J, González-Tudela A. Probing and harnessing photonic Fermi arc surface states using light-matter interactions. SCIENCE ADVANCES 2023; 9:eadf8257. [PMID: 37256964 PMCID: PMC10413654 DOI: 10.1126/sciadv.adf8257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
Fermi arcs, i.e., surface states connecting topologically distinct Weyl points, represent a paradigmatic manifestation of the topological aspects of Weyl physics. We investigate a light-matter interface based on the photonic counterpart of these states and prove that it can lead to phenomena with no analog in other setups. First, we show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border. Second, we demonstrate that, exploiting the negative refraction of these modes, the Fermi arc surface states can act as a robust quantum link, enabling, e.g., the occurrence of perfect quantum state transfer between the considered emitters or the formation of highly entangled states. In addition to their fundamental interest, our findings evidence the potential offered by the photonic Fermi arc light-matter interfaces for the design of more robust quantum technologies.
Collapse
Affiliation(s)
- Iñaki García-Elcano
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Jaime Merino
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Jorge Bravo-Abad
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | |
Collapse
|
6
|
Tang JS, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, Xia K. Nonreciprocal Single-Photon Band Structure. PHYSICAL REVIEW LETTERS 2022; 128:203602. [PMID: 35657886 DOI: 10.1103/physrevlett.128.203602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
We study a single-photon band structure in a one-dimensional coupled-resonator optical waveguide that chirally couples to an array of two-level quantum emitters (QEs). The chiral interaction between the resonator mode and the QE can break the time-reversal symmetry without the magneto-optical effect and an external or synthetic magnetic field. As a result, nonreciprocal single-photon edge states, band gaps, and flat bands appear. By using such a chiral QE coupled-resonator optical waveguide system, including a finite number of unit cells and working in the nonreciprocal band gap, we achieve frequency-multiplexed single-photon circulators with high fidelity and low insertion loss. The chiral QE-light interaction can also protect one-way propagation of single photons against backscattering. Our work opens a new door for studying unconventional photonic band structures without electronic counterparts in condensed matter and exploring its applications in the quantum regime.
Collapse
Affiliation(s)
- Jiang-Shan Tang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- School of Physics, Nanjing University, Nanjing 210023, China
| | - Wei Nie
- RIKEN Quantum Computing Center, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Lei Tang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Mingyuan Chen
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xin Su
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- School of Physics, Nanjing University, Nanjing 210023, China
| | - Franco Nori
- RIKEN Quantum Computing Center, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Keyu Xia
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- School of Physics, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation (Nanjing University), Ministry of Education, Nanjing 210023, China
| |
Collapse
|
7
|
Fernández-Fernández D, González-Tudela A. Tunable Directional Emission and Collective Dissipation with Quantum Metasurfaces. PHYSICAL REVIEW LETTERS 2022; 128:113601. [PMID: 35363033 DOI: 10.1103/physrevlett.128.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Subwavelength atomic arrays, recently labeled as quantum metamaterials, have emerged as an exciting platform for obtaining novel quantum optical phenomena. The strong interference effects in these systems generate subradiant excitations that propagate through the atomic array with very long lifetimes. Here, we demonstrate that one can harness these excitations to obtain tunable directional emission patterns and collective dissipative couplings when placing judiciously additional atoms nearby the atomic array. For doing that, we first characterize the optimal square array geometry to obtain directional emission patterns. Then, we characterize the best atomic positions to couple efficiently to the subradiant metasurface excitations and provide several improvement strategies based on entangled atomic clusters or bilayers. Afterward, we also show how the directionality of the emission pattern can be controlled through the relative dipole orientation between the auxiliary atoms and the one of the array. Finally, we benchmark how these directional emission patterns translate into to collective, anisotropic dissipative couplings between the auxiliary atoms by studying the lifetime modification of atomic entangled states.
Collapse
Affiliation(s)
- D Fernández-Fernández
- Institute of Fundamental Physics IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid ICMM-CSIC, 28049 Madrid, Spain
| | - A González-Tudela
- Institute of Fundamental Physics IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain
| |
Collapse
|
8
|
Du CX, Xu N, Du L, Zhang Y, Wu JH. Topological edge states controlled by next-nearest-neighbor coupling and Peierls phase in a P T-symmetric trimerized lattice. OPTICS EXPRESS 2021; 29:37722-37732. [PMID: 34808839 DOI: 10.1364/oe.438779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
We study the topological features in a trimerized lattice of parity-time symmetry with comparable nearest-neighbor (NN) and next-nearest-neighbor (NNN) couplings as well as a Peierls phase. Eigen energies of four edge states in two bandgaps, of topological origin verified by the quantized total Zak phase, are surprisingly independent of the NNN coupling and the Peierls phase. Topological regions with respect to the intercell NN coupling, as the intracell NN coupling is fixed, can be extended with reinforced localization strengths for one pair of edge states but reduced with weakened localization strengths for the other pair of edge states, by increasing the NNN coupling. The partial overlapping between extended and reduced topological regions promises then a two-step phase transition of 'zero - two - four' edge states, viable to be periodically modulated by the Peierls phase.
Collapse
|