1
|
Picard LRB, Park AJ, Patenotte GE, Gebretsadkan S, Wellnitz D, Rey AM, Ni KK. Entanglement and iSWAP gate between molecular qubits. Nature 2024:10.1038/s41586-024-08177-3. [PMID: 39537926 DOI: 10.1038/s41586-024-08177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Quantum computation and simulation rely on long-lived qubits with controllable interactions. Trapped polar molecules have been proposed as a promising quantum computing platform, offering scalability and single-particle addressability while still leveraging inherent complexity and strong couplings of molecules1-5. Recent progress in the single quantum state preparation and coherence of the hyperfine-rotational states of individually trapped molecules allows them to serve as promising qubits6-11, with intermolecular dipolar interactions creating entanglement12,13. However, universal two-qubit gates have not been demonstrated with molecules. Here we harness intrinsic molecular resources to implement a two-qubit iSWAP gate using individually trapped X1Σ+ NaCs molecules. By allowing the molecules to interact for 664 μs at a distance of 1.9 μm, we create a maximally entangled Bell state with a fidelity of 94(3)% in trials in which both molecules are present. Using motion-rotation coupling, we measure residual excitation of the lowest few motional states along the axial trapping direction and find them to be the primary source of decoherence. Finally, we identify two non-interacting hyperfine states within the ground rotational level in which we encode a qubit. The interaction is toggled by transferring between interacting and non-interacting states to realize an iSWAP gate. We verify the gate performance by measuring its logical truth table.
Collapse
Affiliation(s)
- Lewis R B Picard
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Annie J Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
| | - Gabriel E Patenotte
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Samuel Gebretsadkan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - David Wellnitz
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
| |
Collapse
|
2
|
Hermsmeier R, Rey AM, Tscherbul TV. Magnetically Tunable Electric Dipolar Interactions of Ultracold Polar Molecules in the Quantum Ergodic Regime. PHYSICAL REVIEW LETTERS 2024; 133:143403. [PMID: 39423408 DOI: 10.1103/physrevlett.133.143403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/13/2024] [Indexed: 10/21/2024]
Abstract
By leveraging the hyperfine interaction between the rotational and nuclear spin degrees of freedom, we demonstrate extensive magnetic control over the electric dipole moments, electric dipolar interactions, and ac Stark shifts of ground-state alkali-dimer molecules such as KRb(X^{1}Σ^{+}). The control is enabled by narrow avoided crossings and the highly ergodic character of molecular eigenstates at low magnetic fields, offering a general and robust way of continuously tuning the intermolecular electric dipolar interaction for applications in quantum simulation, quantum sensing, and dipolar spinor physics.
Collapse
|
3
|
Luke J, Zhu L, Liu YX, Ni KK. Reaction interferometry with ultracold molecules. Faraday Discuss 2024; 251:63-75. [PMID: 38775173 DOI: 10.1039/d3fd00175j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We propose to coherently control the ultracold 2KRb → K2 + Rb2 reaction product state distribution via quantum interference. By leveraging that the nuclear spin degrees of freedom in the reaction maintain coherence, which was demonstrated in Liu, Zhu et al., arXiv, 2023, arXiv:2310.07620, https://doi.org/10.48550/arXiv.2310.07620, we explore the concept of a "reaction interferometer". Such an interferometer involves splitting one KRb molecular cloud into two, imprinting a well-defined relative phase between them, recombining the clouds for reactions, and measuring the product state distribution. We show that the interference patterns provide a mechanism to coherently control the product states, and specific product channels also serve as an entanglement witness of the atoms in the reactant KRb molecule.
Collapse
Affiliation(s)
- Jeshurun Luke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Lingbang Zhu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Yi-Xiang Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
4
|
He C, Nie X, Avalos V, Botsi S, Kumar S, Yang A, Dieckmann K. Efficient Creation of Ultracold Ground State ^{6}Li^{40}K Polar Molecules. PHYSICAL REVIEW LETTERS 2024; 132:243401. [PMID: 38949353 DOI: 10.1103/physrevlett.132.243401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/26/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
We report the creation of ultracold ground state ^{6}Li^{40}K polar molecules with high efficiency. Starting from weakly bound molecules, stimulated Raman adiabatic passage is adopted to coherently transfer the molecules to their singlet rovibrational ground state |X^{1}Σ^{+},v=0,J=0⟩. By employing a singlet stimulated Raman adiabatic passage pathway and low-phase-noise narrow-linewidth lasers, we observed a one-way transfer efficiency of 96(4)%. Held in an optical dipole trap, the lifetime of the ground state molecules is measured to be 5.0(3) ms. The large permanent dipole moment of LiK is confirmed by applying a dc electric field on the molecules and performing Stark shift spectroscopy of the ground state. With recent advances in the quantum control of collisions, our work paves the way for exploring quantum many-body physics with strongly interacting ^{6}Li^{40}K molecules.
Collapse
|
5
|
Zhang J. Highly efficient creation and detection of deeply bound molecules via invariant-based inverse engineering with feasible modified drivings. J Chem Phys 2024; 160:024104. [PMID: 38189609 DOI: 10.1063/5.0183063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Stimulated Raman Adiabatic Passage (STIRAP) and its variants, such as M-type chainwise-STIRAP, allow for efficiently transferring the populations in a multilevel system and have widely been used to prepare molecules in their rovibrational ground state. However, their transfer efficiencies are generally imperfect. The main obstacle is the presence of losses and the requirement to make the dynamics adiabatic. To this end, in the present paper, a new theoretical method is proposed for the efficient and robust creation and detection of deeply bound molecules in three-level Λ-type and five-level M-type systems via "Invariant-based shortcut-to-adiabaticity." In the regime of large detunings, we first reduce the dynamics of three- and five-level molecular systems to those of effective two- and three-level counterparts. By doing so, the major molecular losses from the excited states can be well suppressed. Consequently, the effective two-level counterpart can be directly compatible with two different "Invariant-based Inverse Engineering" protocols; the results show that both protocols give a comparable performance and have a good experimental feasibility. For the effective three-level counterpart, by considering a relation among the four incident pulses, we show that this model can be further generalized to an effective Λ-type one with the simplest resonant coupling. This generalized model permits us to borrow the "Invariant-based Inverse Engineering" protocol from a standard three-level Λ-type system to a five-level M-type system. Numerical calculations show that the weakly bound molecules can be efficiently transferred to their deeply bound states without strong laser pulses, and the stability against parameter variations is well preserved. Finally, the detection of ultracold deeply bound molecules is discussed.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Park AJ, Picard LRB, Patenotte GE, Zhang JT, Rosenband T, Ni KK. Extended Rotational Coherence of Polar Molecules in an Elliptically Polarized Trap. PHYSICAL REVIEW LETTERS 2023; 131:183401. [PMID: 37977633 DOI: 10.1103/physrevlett.131.183401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
We demonstrate long rotational coherence of individual polar molecules in the motional ground state of an optical trap. In the present, previously unexplored regime, the rotational eigenstates of molecules are dominantly quantized by trapping light rather than static fields, and the main source of decoherence is differential light shift. In an optical tweezer array of NaCs molecules, we achieve a three-orders-of-magnitude reduction in differential light shift by changing the trap's polarization from linear to a specific "magic" ellipticity. With spin-echo pulses, we measure a rotational coherence time of 62(3) ms (one pulse) and 250(40) ms (up to 72 pulses), surpassing the projected duration of resonant dipole-dipole entangling gates by orders of magnitude.
Collapse
Affiliation(s)
- Annie J Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Lewis R B Picard
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Gabriel E Patenotte
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Jessie T Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | | | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
7
|
Guttridge A, Ruttley DK, Baldock AC, González-Férez R, Sadeghpour HR, Adams CS, Cornish SL. Observation of Rydberg Blockade Due to the Charge-Dipole Interaction between an Atom and a Polar Molecule. PHYSICAL REVIEW LETTERS 2023; 131:013401. [PMID: 37478436 DOI: 10.1103/physrevlett.131.013401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 07/23/2023]
Abstract
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers. The molecule is formed by magnetoassociation of a Rb+Cs atom pair and subsequently transferred to the rovibrational ground state with an efficiency of 91(1)%. Species-specific tweezers are used to control the separation between the atom and molecule. The charge-dipole interaction causes blockade of the transition to the Rb(52s) Rydberg state, when the atom-molecule separation is set to 310(40) nm. The observed excitation dynamics are in good agreement with simulations using calculated interaction potentials. Our results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
Collapse
Affiliation(s)
- Alexander Guttridge
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Daniel K Ruttley
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Archie C Baldock
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Rosario González-Férez
- Instituto Carlos I de Física Teórica y Computacional, and Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain
| | - H R Sadeghpour
- ITAMP, Center for Astrophysics | Harvard & Smithsonian, Cambridge, Massachusetts 02138, USA
| | - C S Adams
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Simon L Cornish
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
- Joint Quantum Centre Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
8
|
Ruttley DK, Guttridge A, Spence S, Bird RC, Le Sueur CR, Hutson JM, Cornish SL. Formation of Ultracold Molecules by Merging Optical Tweezers. PHYSICAL REVIEW LETTERS 2023; 130:223401. [PMID: 37327422 DOI: 10.1103/physrevlett.130.223401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 06/18/2023]
Abstract
We demonstrate the formation of a single RbCs molecule during the merging of two optical tweezers, one containing a single Rb atom and the other a single Cs atom. Both atoms are initially predominantly in the motional ground states of their respective tweezers. We confirm molecule formation and establish the state of the molecule formed by measuring its binding energy. We find that the probability of molecule formation can be controlled by tuning the confinement of the traps during the merging process, in good agreement with coupled-channel calculations. We show that the conversion efficiency from atoms to molecules using this technique is comparable to magnetoassociation.
Collapse
Affiliation(s)
- Daniel K Ruttley
- Department of Physics and Joint Quantum Centre (JQC) Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Alexander Guttridge
- Department of Physics and Joint Quantum Centre (JQC) Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Stefan Spence
- Department of Physics and Joint Quantum Centre (JQC) Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Robert C Bird
- Department of Chemistry and Joint Quantum Centre (JQC) Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - C Ruth Le Sueur
- Department of Chemistry and Joint Quantum Centre (JQC) Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Jeremy M Hutson
- Department of Chemistry and Joint Quantum Centre (JQC) Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Simon L Cornish
- Department of Physics and Joint Quantum Centre (JQC) Durham-Newcastle, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
9
|
Deng F, Chen XY, Luo XY, Zhang W, Yi S, Shi T. Effective Potential and Superfluidity of Microwave-Shielded Polar Molecules. PHYSICAL REVIEW LETTERS 2023; 130:183001. [PMID: 37204905 DOI: 10.1103/physrevlett.130.183001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/08/2023] [Accepted: 04/09/2023] [Indexed: 05/21/2023]
Abstract
We analytically show that the effective interaction potential between microwave-shielded polar molecules consists of an anisotropic van der Waals-like shielding core and a modified dipolar interaction. This effective potential is validated by comparing its scattering cross sections with those calculated using intermolecular potential involving all interaction channels. It is shown that a scattering resonance can be induced under microwave fields reachable in current experiments. With the effective potential, we further study the Bardeen-Cooper-Schrieffer pairing in the microwave-shielded NaK gas. We show that the superfluid critical temperature is drastically enhanced near the resonance. As the effective potential is suitable for exploring the many-body physics of molecular gases, our results pave the way for studies of the ultracold gases of microwave-shielded molecular gases.
Collapse
Affiliation(s)
- Fulin Deng
- School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xing-Yan Chen
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Xin-Yu Luo
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Wenxian Zhang
- School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, Hubei 430206, China
| | - Su Yi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
| | - Tao Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
| |
Collapse
|
10
|
Hallas C, Vilas NB, Anderegg L, Robichaud P, Winnicki A, Zhang C, Cheng L, Doyle JM. Optical Trapping of a Polyatomic Molecule in an ℓ-Type Parity Doublet State. PHYSICAL REVIEW LETTERS 2023; 130:153202. [PMID: 37115898 DOI: 10.1103/physrevlett.130.153202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
We report optical trapping of a polyatomic molecule, calcium monohydroxide (CaOH). CaOH molecules from a magneto-optical trap are sub-Doppler laser cooled to 20(3) μK in free space and loaded into an optical dipole trap. We attain an in-trap molecule number density of 3(1)×10^{9} cm^{-3} at a temperature of 57(8) μK. Trapped CaOH molecules are optically pumped into an excited vibrational bending mode, whose ℓ-type parity doublet structure is a potential resource for a wide range of proposed quantum science applications with polyatomic molecules. We measure the spontaneous, radiative lifetime of this bending mode state to be ∼0.7 s.
Collapse
Affiliation(s)
- Christian Hallas
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Nathaniel B Vilas
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Paige Robichaud
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Andrew Winnicki
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
11
|
Tscherbul TV, Ye J, Rey AM. Robust Nuclear Spin Entanglement via Dipolar Interactions in Polar Molecules. PHYSICAL REVIEW LETTERS 2023; 130:143002. [PMID: 37084438 DOI: 10.1103/physrevlett.130.143002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
We propose a general protocol for on-demand generation of robust entangled states of nuclear and/or electron spins of ultracold ^{1}Σ and ^{2}Σ polar molecules using electric dipolar interactions. By encoding a spin-1/2 degree of freedom in a combined set of spin and rotational molecular levels, we theoretically demonstrate the emergence of effective spin-spin interactions of the Ising and XXZ forms, enabled by efficient magnetic control over electric dipolar interactions. We show how to use these interactions to create long-lived cluster and squeezed spin states.
Collapse
Affiliation(s)
- Timur V Tscherbul
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
12
|
Stevenson I, Lam AZ, Bigagli N, Warner C, Yuan W, Zhang S, Will S. Ultracold Gas of Dipolar NaCs Ground State Molecules. PHYSICAL REVIEW LETTERS 2023; 130:113002. [PMID: 37001095 DOI: 10.1103/physrevlett.130.113002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
We report on the creation of bosonic NaCs molecules in their absolute rovibrational ground state via stimulated Raman adiabatic passage. We create ultracold gases with up to 22 000 dipolar NaCs molecules at a temperature of 300(50) nK and a peak density of 1.0(4)×10^{12} cm^{-3}. We demonstrate comprehensive quantum state control by preparing the molecules in a specific electronic, vibrational, rotational, and hyperfine state. We measure the ground state ac polarizability at 1064 nm along with the two-body loss rate, which we find to be universal. Employing the tunability and strength of the permanent electric dipole moment of NaCs, we induce dipole moments of up to 2.6 D at a dc electric field of 2.1(2) kV/cm and demonstrate strong microwave coupling between the two lowest rotational states with a Rabi frequency of 2π×45 MHz. A large electric dipole moment, accessible at relatively small electric fields, makes ultracold gases of NaCs molecules well suited for the exploration of strongly interacting phases of dipolar quantum matter.
Collapse
Affiliation(s)
- Ian Stevenson
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Aden Z Lam
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Niccolò Bigagli
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Claire Warner
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Weijun Yuan
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Siwei Zhang
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Sebastian Will
- Department of Physics, Columbia University, New York, New York 10027, USA
| |
Collapse
|
13
|
Christakis L, Rosenberg JS, Raj R, Chi S, Morningstar A, Huse DA, Yan ZZ, Bakr WS. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 2023; 614:64-69. [PMID: 36725998 DOI: 10.1038/s41586-022-05558-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 02/03/2023]
Abstract
Synthetic quantum systems with interacting constituents play an important role in quantum information processing and in explaining fundamental phenomena in many-body physics. Following impressive advances in cooling and trapping techniques, ensembles of ultracold polar molecules have emerged as a promising platform that combines several advantageous properties1-11. These include a large set of internal states with long coherence times12-17 and long-range, anisotropic interactions. These features could enable the exploration of intriguing phases of correlated quantum matter, such as topological superfluids18, quantum spin liquids19, fractional Chern insulators20 and quantum magnets21,22. Probing correlations in these phases is crucial to understanding their properties, necessitating the development of new experimental techniques. Here we use quantum gas microscopy23 to measure the site-resolved dynamics of quantum correlations of polar 23Na87Rb molecules confined in a two-dimensional optical lattice. By using two rotational states of the molecules, we realize a spin-1/2 system with dipolar interactions between particles, producing a quantum spin-exchange model21,22,24,25. We study the evolution of correlations during the thermalization process of an out-of-equilibrium spin system for both spatially isotropic and anisotropic interactions. Furthermore, we examine the correlation dynamics of a spin-anisotropic Heisenberg model engineered from the native spin-exchange model by using periodic microwave pulses26-28. These experiments push the frontier of probing and controlling interacting systems of ultracold molecules, with prospects for exploring new regimes of quantum matter and characterizing entangled states that are useful for quantum computation29,30 and metrology31.
Collapse
Affiliation(s)
| | | | - Ravin Raj
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Sungjae Chi
- Department of Physics, Princeton University, Princeton, NJ, USA
| | | | - David A Huse
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Zoe Z Yan
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Bause R, Christianen A, Schindewolf A, Bloch I, Luo XY. Ultracold Sticky Collisions: Theoretical and Experimental Status. J Phys Chem A 2023; 127:729-741. [PMID: 36624934 PMCID: PMC9884084 DOI: 10.1021/acs.jpca.2c08095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Collisional complexes, which are formed as intermediate states in molecular collisions, are typically short-lived and decay within picoseconds. However, in ultracold collisions involving bialkali molecules, complexes can live for milliseconds, completely changing the collision dynamics. This can lead to unexpected two-body loss in samples of nonreactive molecules. During the past decade, such "sticky" collisions have been a major hindrance in the preparation of dense and stable molecular samples, especially in the quantum-degenerate regime. Currently, the behavior of the complexes is not fully understood. For example, in some cases, their lifetime has been measured to be many orders of magnitude longer than recent models predict. This is not only an intriguing problem in itself but also practically relevant, since understanding molecular complexes may help to mitigate their detrimental effects. Here, we review the recent experimental and theoretical progress in this field. We treat the case of molecule-molecule as well as molecule-atom collisions.
Collapse
Affiliation(s)
- Roman Bause
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| | - Arthur Christianen
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| | - Andreas Schindewolf
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| | - Immanuel Bloch
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
- Fakultät
für Physik, Ludwig-Maximilians-Universität, 80799München, Germany
| | - Xin-Yu Luo
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| |
Collapse
|
15
|
Elkamshishy AA, Greene CH. Triatomic Photoassociation in an Ultracold Atom-Molecule Collision. J Phys Chem A 2023; 127:18-28. [PMID: 36584308 DOI: 10.1021/acs.jpca.2c04727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ultracold collisions of neutral atoms and molecules have been of great interest since experimental advances enabled the cooling and trapping of such species. This study develops a simplified theoretical treatment of a low-energy collision between an alkali atom and a diatomic molecule accompanied by absorption of a photon from an external electromagnetic field. The long-range interaction between the two species is treated, including the atomic spin-orbit interaction. The long-range potential energy curves for the triatomic complex are calculated in realistic detail, while effects of the short-range behavior are mimicked by applying different boundary conditions at the van der Waals length. For neutral colliding species, the leading interaction term is the dipole-dipole interaction. In the case of nonpolar dimers like Cs2, the second leading term is the quadrupole-quadrupole interaction. However, there is also a strong dipole-quadrupole interaction for dimers with a large permanent dipole moment such as NaCs, making the dipole-quadrupole interaction the second leading term for an atom colliding with a polar dimer. Our applications of the simplified treatment show a higher density of trimer states for a polar dimer compared to the case of a nonpolar dimer like Cs2. This is a consequence of the strong quadrupole-dipole coupling between the atom and the dimer dipole moment.
Collapse
Affiliation(s)
- Ahmed A Elkamshishy
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana47907, United States
| | - Chris H Greene
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana47907, United States.,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana47907, United States
| |
Collapse
|
16
|
Brookes SGH, Hutson JM. Interaction Potential for NaCs for Ultracold Scattering and Spectroscopy. J Phys Chem A 2022; 126:3987-4001. [PMID: 35715220 PMCID: PMC9251775 DOI: 10.1021/acs.jpca.2c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We obtain the interaction potential for NaCs by fitting to experiments on ultracold scattering and spectroscopy in optical tweezers. The central region of the potential has been accurately determined from Fourier transform spectroscopy at higher temperatures, so we focus on adjusting the long-range and short-range parts. We use coupled-channel calculations of binding energies and wave functions to understand the nature of the molecular states observed in ultracold spectroscopy and of the state that causes the Feshbach resonance used to create ultracold NaCs molecules. We elucidate the relationships between the experimental quantities and features of the interaction potential. We establish the combinations of experimental quantities that determine particular features of the potential. We find that the long-range dispersion coefficient C6 must be increased by about 0.9% to 3256(1)Eha06 to fit the experimental results. We use coupled-channel calculations on the final potential to predict bound-state energies and resonance positions.
Collapse
Affiliation(s)
- Samuel G H Brookes
- Joint Quantum Centre (JQC) Durham-Newcastle, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Jeremy M Hutson
- Joint Quantum Centre (JQC) Durham-Newcastle, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
17
|
Botsi S, Yang A, Lam MM, Pal SB, Kumar S, Debatin M, Dieckmann K. Empirical LiK excited state potentials: connecting short range and near dissociation expansions. Phys Chem Chem Phys 2022; 24:3933-3940. [PMID: 35094033 DOI: 10.1039/d1cp04707h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a high-resolution spectroscopic survey of 6Li40K molecules near the 2S + 4P dissociation threshold and produce a fully empirical representation for the B1Π potential by connecting available short- and long-range data. The purpose is to identify a suitable intermediate state for a coherent Raman transfer to the absolute ground state, and the creation of a molecular gas with dipolar interactions. Starting from weakly bound ultracold Feshbach molecules, the transition frequencies to twenty-six vibrational states are determined. Our data are combined with long-range measurements [Ridinger et al., EPL, 2011, 96, 33001], and near-dissociation expansions for the spin-orbit coupled potentials are fitted to extract the van der Waals C6 dispersion coefficients. A suitable vibrational level is identified by resolving its Zeeman structure and by comparing the experimentally attained g-factor to our theoretical prediction. Using mass-scaling of the short-range data for the B1Π [Pashov et al., Chem. Phys. Lett., 1998, 292, 615620] and an updated value for its depth, we model the short- and the long-range data simultaneously and produce a Rydberg-Klein-Rees curve covering the entire range.
Collapse
Affiliation(s)
- Sofia Botsi
- Centre for Quantum Technologies (CQT), 3 Science Drive 2, Singapore 117543, Singapore.
| | - Anbang Yang
- Centre for Quantum Technologies (CQT), 3 Science Drive 2, Singapore 117543, Singapore.
| | - Mark M Lam
- Centre for Quantum Technologies (CQT), 3 Science Drive 2, Singapore 117543, Singapore.
| | - Sambit B Pal
- Centre for Quantum Technologies (CQT), 3 Science Drive 2, Singapore 117543, Singapore.
| | - Sunil Kumar
- Centre for Quantum Technologies (CQT), 3 Science Drive 2, Singapore 117543, Singapore.
| | - Markus Debatin
- Centre for Quantum Technologies (CQT), 3 Science Drive 2, Singapore 117543, Singapore.
| | - Kai Dieckmann
- Centre for Quantum Technologies (CQT), 3 Science Drive 2, Singapore 117543, Singapore. .,Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| |
Collapse
|
18
|
Abstract
Advances in atomic, molecular, and optical physics techniques allowed the cooling of simple molecules down to the ultracold regime ([Formula: see text]1 mK) and opened opportunities to study chemical reactions with unprecedented levels of control. This review covers recent developments in studying bimolecular chemistry at ultralow temperatures. We begin with a brief overview of methods for producing, manipulating, and detecting ultracold molecules. We then survey experimental works that exploit the controllability of ultracold molecules to probe and modify their long-range interactions. Further combining the use of physical chemistry techniques such as mass spectrometry and ion imaging significantly improved the detection of ultracold reactions and enabled explorations of their dynamics in the short range. We discuss a series of studies on the reaction KRb + KRb → K2 + Rb2 initiated below 1 [Formula: see text]K, including the direct observation of a long-lived complex, the demonstration of product rotational state control via conserved nuclear spins, and a test of the statistical model using the complete quantum state distribution of the products. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yu Liu
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA; .,Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Harvard-Massachusetts Institute of Technology Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
19
|
Burchesky S, Anderegg L, Bao Y, Yu SS, Chae E, Ketterle W, Ni KK, Doyle JM. Rotational Coherence Times of Polar Molecules in Optical Tweezers. PHYSICAL REVIEW LETTERS 2021; 127:123202. [PMID: 34597100 DOI: 10.1103/physrevlett.127.123202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Qubit coherence times are critical to the performance of any robust quantum computing platform. For quantum information processing using arrays of polar molecules, a key performance parameter is the molecular rotational coherence time. We report a 93(7) ms coherence time for rotational state qubits of laser cooled CaF molecules in optical tweezer traps, over an order of magnitude longer than previous systems. Inhomogeneous broadening due to the differential polarizability between the qubit states is suppressed by tuning the tweezer polarization and applied magnetic field to a "magic" angle. The coherence time is limited by the residual differential polarizability, implying improvement with further cooling. A single spin-echo pulse is able to extend the coherence time to nearly half a second. The measured coherence times demonstrate the potential of polar molecules as high fidelity qubits.
Collapse
Affiliation(s)
- Sean Burchesky
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Yicheng Bao
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Scarlett S Yu
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Eunmi Chae
- Department of Physics, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Wolfgang Ketterle
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kang-Kuen Ni
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
20
|
Jambrina PG, Croft JFE, Balakrishnan N, Aoiz FJ. Stereodynamic control of cold rotationally inelastic CO + HD collisions. Phys Chem Chem Phys 2021; 23:19364-19374. [PMID: 34524308 DOI: 10.1039/d1cp02755g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Quantum control of molecular collision dynamics is an exciting emerging area of cold collisions. Co-expansion of collision partners in a supersonic molecular beam combined with precise control of their quantum states and alignment/orientation using Stark-induced Adiabatic Raman Passage allows exquisite stereodynamic control of the collision outcome. This approach has recently been demonstrated for rotational quenching of HD in collisions with H2, D2, and He and D2 by He. Here we illustrate this approach for HD(v = 0, j = 2) + CO(v = 0, j = 0) → HD(v' = 0, j') + CO(v' = 0, j') collisions through full-dimensional quantum scattering calculations at collision energies near 1 K. It is shown that the collision dynamics at energies between 0.01-1 K are controlled by an interplay of L = 1 and L = 2 partial wave resonances depending on the final rotational levels of the two molecules. Polarized cross sections resolved into magnetic sub-levels of the initial and final rotational quantum numbers of the two molecules also reveal a significant stereodynamic effect in the cold energy regime. Overall, the stereodynamic effect is controlled by both geometric and dynamical factors, with parity conservation playing an important role in modulating these contributions depending on the particular final state.
Collapse
Affiliation(s)
- Pablo G Jambrina
- Departamento de Química Física, University of Salamanca, Salamanca 37008, Spain.
| | - James F E Croft
- Department of Physics, University of Otago, Dunedin 9054, New Zealand. .,Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| | | | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain.
| |
Collapse
|
21
|
Anderegg L, Burchesky S, Bao Y, Yu SS, Karman T, Chae E, Ni KK, Ketterle W, Doyle JM. Observation of microwave shielding of ultracold molecules. Science 2021; 373:779-782. [PMID: 34385393 DOI: 10.1126/science.abg9502] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/07/2021] [Indexed: 11/03/2022]
Abstract
Harnessing the potential wide-ranging quantum science applications of molecules will require control of their interactions. Here, we used microwave radiation to directly engineer and tune the interaction potentials between ultracold calcium monofluoride (CaF) molecules. By merging two optical tweezers, each containing a single molecule, we probed collisions in three dimensions. The correct combination of microwave frequency and power created an effective repulsive shield, which suppressed the inelastic loss rate by a factor of six, in agreement with theoretical calculations. The demonstrated microwave shielding shows a general route to the creation of long-lived, dense samples of ultracold polar molecules and evaporative cooling.
Collapse
Affiliation(s)
- Loïc Anderegg
- Department of Physics, Harvard University, Cambridge, MA, USA. .,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Sean Burchesky
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Yicheng Bao
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Scarlett S Yu
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Tijs Karman
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA.,Radboud University, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Eunmi Chae
- Department of Physics, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Kang-Kuen Ni
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Wolfgang Ketterle
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, MA, USA.,Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| |
Collapse
|