1
|
Logan AD, Yama NS, Fu KMC. Selective active resonance tuning for multi-mode nonlinear photonic cavities. OPTICS EXPRESS 2024; 32:13396-13407. [PMID: 38859311 DOI: 10.1364/oe.512048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/18/2024] [Indexed: 06/12/2024]
Abstract
Resonant enhancement of nonlinear photonic processes is critical for the scalability of applications such as long-distance entanglement generation. To implement nonlinear resonant enhancement, multiple resonator modes must be individually tuned onto a precise set of process wavelengths, which requires multiple linearly-independent tuning methods. Using coupled auxiliary resonators to indirectly tune modes in a multi-resonant nonlinear cavity is particularly attractive because it allows the extension of a single physical tuning mechanism, such as thermal tuning, to provide the required independent controls. Here we model and simulate the performance and tradeoffs of a coupled-resonator tuning scheme which uses auxiliary resonators to tune specific modes of a multi-resonant nonlinear process. Our analysis determines the tuning bandwidth for steady-state mode field intensity can significantly exceed the inter-cavity coupling rate g if the total quality factor of the auxiliary resonator is higher than the multi-mode main resonator. Consequently, over-coupling a nonlinear resonator mode to improve the maximum efficiency of a frequency conversion process will simultaneously expand the auxiliary resonator tuning bandwidth for that mode, indicating a natural compatibility with this tuning scheme. We apply the model to an existing small-diameter triply-resonant ring resonator design and find that a tuning bandwidth of 136 GHz ≈ 1.1 nm can be attained for a mode in the telecom band while limiting excess scattering losses to a quality factor of 106. Such range would span the distribution of inhomogeneously broadened quantum emitter ensembles as well as resonator fabrication variations, indicating the potential for the auxiliary resonators to enable not only low-loss telecom conversion but also the generation of indistinguishable photons in a quantum network.
Collapse
|
2
|
Zhou YR, Zhang QF, Liu FF, Han YH, Gao YP, Fan L, Zhang R, Cao C. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing. OPTICS EXPRESS 2024; 32:2786-2803. [PMID: 38297799 DOI: 10.1364/oe.512280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 02/02/2024]
Abstract
Here, a scheme for a controllable nonreciprocal phonon laser is proposed in a hybrid photonic molecule system consisting of a whispering-gallery mode (WGM) optomechanical resonator and a χ(2)-nonlinear WGM resonator, by directionally quantum squeezing one of two coupled resonator modes. The directional quantum squeezing results in a chiral photon interaction between the resonators and a frequency shift of the squeezed resonator mode with respect to the unsqueezed bare mode. We show that the directional quantum squeezing can modify the effective optomechanical coupling in the optomechanical resonator, and analyze the impacts of driving direction and squeezing extent on the phonon laser action in detail. Our analytical and numerical results indicate that the controllable nonreciprocal phonon laser action can be effectively realized in this system. The proposed scheme uses an all-optical and chip-compatible approach without spinning resonators, which may be more beneficial for integrating and packaging of the system on a chip. Our proposal may provide a new route to realize integratable phonon devices for on-chip nonreciprocal phonon manipulations, which may be used in chiral quantum acoustics, topological phononics, and acoustical information processing.
Collapse
|
3
|
Xie J, Wang Y, Kang H, Cheng J, Shen X. Hydrophobic Silica Microcavities with Sustainable Nonlinear Photonic Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41067-41072. [PMID: 37603696 DOI: 10.1021/acsami.3c06300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Ultrahigh quality factor (Q) microcavities have been emerging as appealing compact photonic platforms for various applications. The Q factor plays a critical role in determining the nonlinear optical performance of a microcavity. However, a silica microcavity suffers from severe degradation of its Q value over time during storage or use in air due to the accumulating surface absorption loss, which would deteriorate their nonlinear photonic performance. Here, we report a new type of ultrahigh Q silica microcavity that effectively prevents Q degradation over time. The Q values of the devices remain unchanged over time under storage in air. Optical frequency combs are generated with sustainable ultralow threshold performance over the course of time from the devices in open air. This approach would greatly facilitate ultrahigh Q silica-based photonic devices for next generation photonic applications.
Collapse
Affiliation(s)
- Jiadu Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Kang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinsong Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoqin Shen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Ion V, Teodorescu V, Birjega R, Dinescu M, Mitterbauer C, Alexandrou I, Ghitiu I, Craciun F, Scarisoreanu ND. Lead-Free Perovskite Thin Films with Tailored Pockels-Kerr Effects for Photonics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38039-38048. [PMID: 37497599 PMCID: PMC10416211 DOI: 10.1021/acsami.3c06499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Pockels and Kerr effects are linear and nonlinear electro-optical effects, respectively, used in many applications. The modulation of the refractive index is employed in different photonic circuits. However, the greatest challenge is in photonic elements for quantum computing at room temperature. For this aim, materials with strong Pockels/Kerr effects and χ(2)/χ(3) nonlinear susceptibilities are necessary. Here, we demonstrate composition-modulated strong electro-optical response in epitaxial films of (Ba,Ca)(Ti,Zr)O3 perovskite titanate. These films are grown by pulsed laser deposition on SrTiO3. Depending on the ratios of Ca/Ba and Ti/Zr, films show high Pockels or Kerr optical nonlinearities. We relate the variable electro-optic response to the occurrence of nanopolar domains with different symmetries in a selected composition range. These findings open the route to easily implement nonlinear optical elements in integrated photonic circuits.
Collapse
Affiliation(s)
- Valentin Ion
- National
Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, Magurele 077125, Romania
| | - Valentin Teodorescu
- National
Institute of Materials Physics, 105 bis Atomistilor, Magurele 077125, Romania
| | - Ruxandra Birjega
- National
Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, Magurele 077125, Romania
| | - Maria Dinescu
- National
Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, Magurele 077125, Romania
| | - Christoph Mitterbauer
- Thermo
Fisher Scientific, Materials & Structural Analysis, De Schakel 2, Eindhoven 5651 GE, the Netherlands
| | - Ioannis Alexandrou
- Thermo
Fisher Scientific, Materials & Structural Analysis, De Schakel 2, Eindhoven 5651 GE, the Netherlands
| | - Ioan Ghitiu
- National
Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, Magurele 077125, Romania
- Faculty
of Physics, University of Bucharest, Magurele 077125, Romania
| | - Floriana Craciun
- CNR-ISM,
Istituto di Struttura della Materia,
Area della Ricerca di Roma-Tor Vergata, Via del Fosso
del Cavaliere 100, Rome I-00133, Italy
| | - Nicu D. Scarisoreanu
- National
Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, Magurele 077125, Romania
| |
Collapse
|
5
|
Liu P, Wen H, Ren L, Shi L, Zhang X. χ (2) nonlinear photonics in integrated microresonators. FRONTIERS OF OPTOELECTRONICS 2023; 16:18. [PMID: 37460874 DOI: 10.1007/s12200-023-00073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023]
Abstract
Second-order (χ(2)) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices. Due to strong photon confinement and long photon lifetime, integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical effects. However, existing silicon-based materials lack a χ(2) response due to their centrosymmetric structures. A variety of novel material platforms possessing χ(2) nonlinearity have been developed over the past two decades. This review comprehensively summarizes the progress of second-order nonlinear optical effects in integrated microresonators. First, the basic principles of χ(2) nonlinear effects are introduced. Afterward, we highlight the commonly used χ(2) nonlinear optical materials, including their material properties and respective functional devices. We also discuss the prospects and challenges of utilizing χ(2) nonlinearity in the field of integrated microcavity photonics.
Collapse
Affiliation(s)
- Pengfei Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Linhao Ren
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Shi
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Optics Valley Laboratory, Wuhan, 430074, China.
| | - Xinliang Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Wuhan, 430074, China
| |
Collapse
|
6
|
Logan AD, Shree S, Chakravarthi S, Yama N, Pederson C, Hestroffer K, Hatami F, Fu KMC. Triply-resonant sum frequency conversion with gallium phosphide ring resonators. OPTICS EXPRESS 2023; 31:1516-1531. [PMID: 36785185 DOI: 10.1364/oe.473211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
We demonstrate quasi-phase matched, triply-resonant sum frequency conversion in 10.6-µm-diameter integrated gallium phosphide ring resonators. A small-signal, waveguide-to-waveguide power conversion efficiency of 8 ± 1.1%/mW; is measured for conversion from telecom (1536 nm) and near infrared (1117 nm) to visible (647 nm) wavelengths with an absolute power conversion efficiency of 6.3 ± 0.6%; measured at saturation pump power. For the complementary difference frequency generation process, a single photon conversion efficiency of 7.2%/mW from visible to telecom is projected for resonators with optimized coupling. Efficient conversion from visible to telecom will facilitate long-distance transmission of spin-entangled photons from solid-state emitters such as the diamond NV center, allowing long-distance entanglement for quantum networks.
Collapse
|
7
|
Qin W, Miranowicz A, Nori F. Beating the 3 dB Limit for Intracavity Squeezing and Its Application to Nondemolition Qubit Readout. PHYSICAL REVIEW LETTERS 2022; 129:123602. [PMID: 36179165 DOI: 10.1103/physrevlett.129.123602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
While the squeezing of a propagating field can, in principle, be made arbitrarily strong, the cavity-field squeezing is subject to the well-known 3 dB limit, and thus has limited applications. Here, we propose the use of a fully quantum degenerate parametric amplifier (DPA) to beat this squeezing limit. Specifically, we show that by simply applying a two-tone driving to the signal mode, the pump mode can, counterintuitively, be driven by the photon loss of the signal mode into a squeezed steady state with, in principle, an arbitrarily high degree of squeezing. Furthermore, we demonstrate that this intracavity squeezing can increase the signal-to-noise ratio of longitudinal qubit readout exponentially with the degree of squeezing. Correspondingly, an improvement of the measurement error by many orders of magnitude can be achieved even for modest parameters. In stark contrast, using intracavity squeezing of the semiclassical DPA cannot practically increase the signal-to-noise ratio and thus improve the measurement error. Our results extend the range of applications of DPAs and open up new opportunities for modern quantum technologies.
Collapse
Affiliation(s)
- Wei Qin
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Adam Miranowicz
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University 61-614 Poznań, Poland
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
8
|
Wang Y, Shu F, Shen Z, Chai C, Zhang Y, Dong C, Zou Z. 基于回音壁微腔的非互易光子器件. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Tang L, Tang J, Chen M, Nori F, Xiao M, Xia K. Quantum Squeezing Induced Optical Nonreciprocity. PHYSICAL REVIEW LETTERS 2022; 128:083604. [PMID: 35275662 DOI: 10.1103/physrevlett.128.083604] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
We propose an all-optical approach to achieve optical nonreciprocity on a chip by quantum squeezing one of two coupled resonator modes. By parametric pumping a χ^{(2)}-nonlinear resonator unidirectionally with a classical coherent field, we squeeze the resonator mode in a selective direction due to the phase-matching condition, and induce a chiral photon interaction between two resonators. Based on this chiral interresonator coupling, we achieve an all-optical diode and a three-port quasicirculator. By applying a second squeezed-vacuum field to the squeezed resonator mode, our nonreciprocal device also works for single-photon pulses. We obtain an isolation ratio of >40 dB for the diode and fidelity of >98% for the quasicirculator, and insertion loss of <1 dB for both. We also show that nonreciprocal transmission of strong light can be switched on and off by a relative weak pump light. This achievement implies a nonreciprocal optical transistor. Our protocol opens up a new route to achieve integrable all-optical nonreciprocal devices permitting chip-compatible optical isolation and nonreciporcal quantum information processing.
Collapse
Affiliation(s)
- Lei Tang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jiangshan Tang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Mingyuan Chen
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Franco Nori
- RIKEN Quantum Computing Center, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Min Xiao
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Keyu Xia
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Liu J, Zheng Q, Xia G, Wu C, Zhu Z, Xu P. Tunable frequency matching for efficient four-wave-mixing Bragg scattering in microrings. OPTICS EXPRESS 2021; 29:36038-36047. [PMID: 34809024 DOI: 10.1364/oe.442152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
We propose and theoretically study a tunable frequency matching method for four-wave-mixing Bragg-scattering frequency conversion in microring resonators. A tunable coupling between the clockwise and counterclockwise propagating modes in the resonators was designed to introduce adjustable mode splitting, thus compensating for the frequency mismatching under different wavelengths. Using a silicon nitride ring resonator as an example, we showed that the tuning bandwidth approaches 35 number of FSRs. Numerical simulations further revealed that the phase-matching strategy is valid under different wavelength combinations and is robust to variations in waveguide geometry and fabrication. These results suggest promising applications in high-efficiency frequency conversion, integrated nonlinear photonics, and quantum optics.
Collapse
|
11
|
Massar S, Clemmen S. Resource efficient single photon source based on active frequency multiplexing. OPTICS LETTERS 2021; 46:2832-2835. [PMID: 34129552 DOI: 10.1364/ol.428148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
We propose a new, to the best of our knowledge, single photon source based on the principle of active multiplexing of heralded single photons, which, unlike previously reported architecture, requires a limited amount of physical resources. We discuss both its feasibility and the purity and indistinguishability of single photons as a function of the key parameters of a possible implementation.
Collapse
|