1
|
Yu M, Li X, Chu Y, Mera B, Ünal FN, Yang P, Liu Y, Goldman N, Cai J. Experimental demonstration of topological bounds in quantum metrology. Natl Sci Rev 2024; 11:nwae065. [PMID: 39301073 PMCID: PMC11409888 DOI: 10.1093/nsr/nwae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/22/2023] [Accepted: 02/25/2024] [Indexed: 09/22/2024] Open
Abstract
Quantum metrology is deeply connected to quantum geometry, through the fundamental notion of quantum Fisher information. Inspired by advances in topological matter, it was recently suggested that the Berry curvature and Chern numbers of band structures can dictate strict lower bounds on metrological properties, hence establishing a strong connection between topology and quantum metrology. In this work, we provide a first experimental verification of such topological bounds, by performing optimal quantum multi-parameter estimation and achieving the best possible measurement precision. By emulating the band structure of a Chern insulator, we experimentally determine the metrological potential across a topological phase transition, and demonstrate strong enhancement in the topologically non-trivial regime. Our work opens the door to metrological applications empowered by topology, with potential implications for quantum many-body systems.
Collapse
Affiliation(s)
- Min Yu
- School of Physics, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangbei Li
- School of Physics, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaoming Chu
- School of Physics, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bruno Mera
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - F Nur Ünal
- TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Pengcheng Yang
- School of Physics, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Liu
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
- Institut für Theoretische Physik and IQST, Universität Ulm, Ulm D-89081 Germany
| | - Nathan Goldman
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Brussels B-1050, Belgium
- Laboratoire Kastler Brossel, Collège de France, Paris 75005, France
| | - Jianming Cai
- School of Physics, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- International Joint Laboratory on Quantum Sensing and Quantum Metrology, Huazhong University of Science and Technology, Wuhan 430074, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Nguyen PT, Le TK, Nguyen HQ, Ho LB. Harnessing graph state resources for robust quantum magnetometry under noise. Sci Rep 2024; 14:20528. [PMID: 39227686 PMCID: PMC11371932 DOI: 10.1038/s41598-024-71365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Precise measurement of magnetic fields is essential for various applications, such as fundamental physics, space exploration, and biophysics. Although recent progress in quantum engineering has assisted in creating advanced quantum magnetometers, there are still ongoing challenges in improving their efficiency and noise resistance. This study focuses on using symmetric graph state resources for quantum magnetometry to enhance measurement precision by analyzing the estimation theory under time-homogeneous and time-inhomogeneous noise models. The results show a significant improvement in estimating both single and multiple Larmor frequencies. In single Larmor frequency estimation, the quantum Fisher information spans a spectrum from the standard quantum limit to the Heisenberg limit within a periodic range of the Larmor frequency, and in the case of multiple Larmor frequencies, it can exceed the standard quantum limit for both noisy cases. This study highlights the potential of graph state-based methods for improving magnetic field measurements under noisy environments.
Collapse
Affiliation(s)
- Phu Trong Nguyen
- Department of Advanced Material Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, 11307, Vietnam
| | - Trung Kien Le
- Department of Physics, University of California, Santa Barbara, Santa Barbara, USA
- Department of Applied Physics, Stanford University, Stanford, USA
| | - Hung Q Nguyen
- Nano and Energy Center, University of Science, Vietnam National University, Hanoi, 120401, Vietnam
| | - Le Bin Ho
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan.
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
3
|
Alushi U, Górecki W, Felicetti S, Di Candia R. Optimality and Noise Resilience of Critical Quantum Sensing. PHYSICAL REVIEW LETTERS 2024; 133:040801. [PMID: 39121399 DOI: 10.1103/physrevlett.133.040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 08/11/2024]
Abstract
We compare critical quantum sensing to passive quantum strategies to perform frequency estimation, in the case of single-mode quadratic Hamiltonians. We show that, while in the unitary case both strategies achieve precision scaling quadratic with the number of photons, in the presence of dissipation this is true only for critical strategies. We also establish that working at the exceptional point or beyond threshold provides suboptimal performance. This critical enhancement is due to the emergence of a transient regime in the open critical dynamics, and is invariant to temperature changes. When considering both time and system size as resources, for both strategies the precision scales linearly with the product of the total time and the number of photons, in accordance with fundamental bounds. However, we show that critical protocols outperform optimal passive strategies if preparation and measurement times are not negligible. Our results are applicable to a broad variety of critical sensors whose phenomenology can be reduced to that of a single-mode quadratic Hamiltonian, including systems described by finite-component and fully connected models.
Collapse
|
4
|
Chu Y, Li X, Cai J. Strong Quantum Metrological Limit from Many-Body Physics. PHYSICAL REVIEW LETTERS 2023; 130:170801. [PMID: 37172232 DOI: 10.1103/physrevlett.130.170801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023]
Abstract
Surpassing the standard quantum limit and even reaching the Heisenberg limit using quantum entanglement, represents the Holy Grail of quantum metrology. However, quantum entanglement is a valuable resource that does not come without a price. The exceptional time overhead for the preparation of large-scale entangled states raises disconcerting concerns about whether the Heisenberg limit is fundamentally achievable. Here, we find a universal speed limit set by the Lieb-Robinson light cone for the quantum Fisher information growth to characterize the metrological potential of quantum resource states during their preparation. Our main result establishes a strong precision limit of quantum metrology accounting for the complexity of many-body quantum resource state preparation and reveals a fundamental constraint for reaching the Heisenberg limit in a generic many-body lattice system with bounded one-site energy. It enables us to identify the essential features of quantum many-body systems that are crucial for achieving the quantum advantage of quantum metrology, and brings an interesting connection between many-body quantum dynamics and quantum metrology.
Collapse
Affiliation(s)
- Yaoming Chu
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangbei Li
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianming Cai
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Płodzień M, Lewenstein M, Witkowska E, Chwedeńczuk J. One-Axis Twisting as a Method of Generating Many-Body Bell Correlations. PHYSICAL REVIEW LETTERS 2022; 129:250402. [PMID: 36608238 DOI: 10.1103/physrevlett.129.250402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate that the one-axis twisting (OAT), a versatile method of creating nonclassical states of bosonic qubits, is a powerful source of many-body Bell correlations. We develop a fully analytical and universal treatment of the process, which allows us to identify the critical time at which the Bell correlations emerge and predict the depth of Bell correlations at all subsequent times. Our findings are illustrated with a highly nontrivial example of the OAT dynamics generated using the Bose-Hubbard model.
Collapse
Affiliation(s)
- Marcin Płodzień
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Maciej Lewenstein
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Emilia Witkowska
- Institute of Physics PAS, Aleja Lotnikow 32/46, 02-668 Warszawa, Poland
| | - Jan Chwedeńczuk
- Faculty of Physics, University of Warsaw, ulica Pasteura 5, PL-02-093 Warsaw, Poland
| |
Collapse
|
6
|
Ying ZJ, Felicetti S, Liu G, Braak D. Critical Quantum Metrology in the Non-Linear Quantum Rabi Model. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1015. [PMID: 35892995 PMCID: PMC9330817 DOI: 10.3390/e24081015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
The quantum Rabi model (QRM) with linear coupling between light mode and qubit exhibits the analog of a second-order phase transition for vanishing mode frequency which allows for criticality-enhanced quantum metrology in a few-body system. We show that the QRM including a nonlinear coupling term exhibits much higher measurement precisions due to its first-order-like phase transition at finite frequency, avoiding the detrimental slowing-down effect close to the critical point of the linear QRM. When a bias term is added to the Hamiltonian, the system can be used as a fluxmeter or magnetometer if implemented in circuit QED platforms.
Collapse
Affiliation(s)
- Zu-Jian Ying
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Simone Felicetti
- Institute for Complex Systems, National Research Council (ISC-CNR), 00185 Rome, Italy
| | - Gang Liu
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Daniel Braak
- EP VI and Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| |
Collapse
|