1
|
Gärttner M, Haas T, Noll J. General Class of Continuous Variable Entanglement Criteria. PHYSICAL REVIEW LETTERS 2023; 131:150201. [PMID: 37897784 DOI: 10.1103/physrevlett.131.150201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/30/2023] [Indexed: 10/30/2023]
Abstract
We present a general class of entanglement criteria for continuous variable systems. Our criteria are based on the Husimi Q distribution and allow for optimization over the set of all concave functions rendering them extremely general and versatile. We show that several entropic criteria and second moment criteria are obtained as special cases. Our criteria reveal entanglement of families of states undetected by any commonly used criteria and provide clear advantages under typical experimental constraints such as finite detector resolution and measurement statistics.
Collapse
Affiliation(s)
- Martin Gärttner
- Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Tobias Haas
- Centre for Quantum Information and Communication, École polytechnique de Bruxelles, CP 165, Université libre de Bruxelles, 1050 Brussels, Belgium
| | - Johannes Noll
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Viermann C, Sparn M, Liebster N, Hans M, Kath E, Parra-López Á, Tolosa-Simeón M, Sánchez-Kuntz N, Haas T, Strobel H, Floerchinger S, Oberthaler MK. Quantum field simulator for dynamics in curved spacetime. Nature 2022; 611:260-264. [PMID: 36352135 DOI: 10.1038/s41586-022-05313-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
In most cosmological models, rapid expansion of space marks the first moments of the Universe and leads to the amplification of quantum fluctuations1. The description of subsequent dynamics and related questions in cosmology requires an understanding of the quantum fields of the standard model and dark matter in curved spacetime. Even the reduced problem of a scalar quantum field in an explicitly time-dependent spacetime metric is a theoretical challenge2-5, and thus a quantum field simulator can lead to insights. Here we demonstrate such a quantum field simulator in a two-dimensional Bose-Einstein condensate with a configurable trap6,7 and adjustable interaction strength to implement this model system. We explicitly show the realization of spacetimes with positive and negative spatial curvature by wave-packet propagation and observe particle-pair production in controlled power-law expansion of space, using Sakharov oscillations to extract amplitude and phase information of the produced state. We find quantitative agreement with analytical predictions for different curvatures in time and space. This benchmarks and thereby establishes a quantum field simulator of a new class. In the future, straightforward upgrades offer the possibility to enter unexplored regimes that give further insight into relativistic quantum field dynamics.
Collapse
Affiliation(s)
- Celia Viermann
- Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany.
| | - Marius Sparn
- Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany
| | - Nikolas Liebster
- Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany
| | - Maurus Hans
- Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany
| | - Elinor Kath
- Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany
| | - Álvaro Parra-López
- Institut für Theoretische Physik, Universität Heidelberg, Heidelberg, Germany.,Departamento de Física Teórica and IPARCOS, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Mireia Tolosa-Simeón
- Institut für Theoretische Physik, Universität Heidelberg, Heidelberg, Germany.,Institut für Theoretische Physik III, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Tobias Haas
- Institut für Theoretische Physik, Universität Heidelberg, Heidelberg, Germany.,Centre for Quantum Information and Communication, École polytechnique de Bruxelles, CP 165/59, Université libre de Bruxelles, Brussels, Belgium
| | - Helmut Strobel
- Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany
| | - Stefan Floerchinger
- Institut für Theoretische Physik, Universität Heidelberg, Heidelberg, Germany.,Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | |
Collapse
|
3
|
Analogue cosmological particle creation in an ultracold quantum fluid of light. Nat Commun 2022; 13:2890. [PMID: 35614054 PMCID: PMC9133100 DOI: 10.1038/s41467-022-30603-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
The rapid expansion of the early universe resulted in the spontaneous production of cosmological particles from vacuum fluctuations, some of which are observable today in the cosmic microwave background anisotropy. The analogue of cosmological particle creation in a quantum fluid was proposed, but the quantum, spontaneous effect due to vacuum fluctuations has not yet been observed. Here we report the spontaneous creation of analogue cosmological particles in the laboratory, using a quenched 3-dimensional quantum fluid of light. We observe acoustic peaks in the density power spectrum, in close quantitative agreement with the quantum-field theoretical prediction. We find that the long-wavelength particles provide a window to early times. This work introduces the quantum fluid of light, as cold as an atomic Bose-Einstein condensate. Under certain conditions light can act as a fluid like a Bose-Einstein condensate. Here the authors discuss an analogy of cosmological particle creation using such a quantum fluid of light.
Collapse
|